Laser & Optoelectronics Progress, Volume. 56, Issue 16, 160101(2019)

Typhoon Classification Model Based on Multi-Scale Convolution Feature Fusion

Peng Lu**, Peiqi Zou, and Guoliang Zou*
Author Affiliations
  • College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
  • show less
    References(18)

    [1] Huang S P, Yu L, Feng Z Y[J]. A survey on image categorization using supervector coding Electronic Technology & Software Engineering, 2013, 32-37.

    [2] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 60, 84-90(2017).

    [4] LeCun Y, Bottou L, Bengio Y et al. . Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 86, 2278-2324(1998).

    [5] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[M]. ∥ Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014. Lecture notes in computer science. Cham:Springer, 8689, 818-833(2014).

    [6] Luo J H, Wu J X. A survey on fine-grained image categorization using deep convolutional features[J]. Acta Automatica Sinica, 43, 1306-1318(2017).

    [8] Niu L Q, Chen X Z, Zhang S N et al. Model construction and performance analysis for deep consecutive convolutional neural network[J]. Journal of Shenyang University of Technology, 38, 662-666(2016).

    [9] Cui R X, Liu M Y, Liu M H. Facial expression recognition based on ensemble of mulitple CNNs[M]. ∥ You Z S, Zhou J, Wang Y H, et al. Biometric recognition. Lecture notes in computer science. Cham: Springer, 9967, 511-518(2016).

    [10] Goodfellow I J, Le Q V, Saxe A M et al. Measuring invariances in deep networks. [C]∥Proceedings of the 22nd International Conference on Neural Information Processing Systems, December 7-10, 2009, Vancouver, British Columbia, Canada. USA: Curran Associates Inc., 646-654(2009).

    [11] Gu J X, Wang Z H, Kuen J et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 77, 354-377(2018).

    [12] Zeiler M D, Krishnan D, Taylor G W et al. Deconvolutional networks. [C]∥2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 13-18, 2010, San Francisco, CA, USA. New York: IEEE, 2528-2535(2010).

    [14] Ivanovsky L, Khryashchev V, Lebedev A et al. Facial expression recognition algorithm based on deep convolution neural network. [C]∥2017 21st Conference of Open Innovations Association (FRUCT), November 6-10, 2017, Helsinki,Finland. New York: IEEE, 141-147(2018).

    [15] Chen H J, Wang Q Q, Yang G W et al. SSD object detection algorithm with multi-scale convolution feature fusion[J]. Journal of Frontiers of Computer Science and Technology, 13, 1049-1061(2019).

    [17] Lee S H, Chan C S, Mayo S J et al. How deep learning extracts and learns leaf features for plant classification[J]. Pattern Recognition, 71, 1-13(2017).

    [18] Iwahori Y, Takada Y, Shiina T et al. Defect classification of electronic board using dense SIFT and CNN[J]. Procedia Computer Science, 126, 1673-1682(2018).

    Tools

    Get Citation

    Copy Citation Text

    Peng Lu, Peiqi Zou, Guoliang Zou. Typhoon Classification Model Based on Multi-Scale Convolution Feature Fusion[J]. Laser & Optoelectronics Progress, 2019, 56(16): 160101

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Jan. 28, 2019

    Accepted: Mar. 21, 2019

    Published Online: Aug. 5, 2019

    The Author Email: Peng Lu (plu@shou.edu.cn), Guoliang Zou (glzou@shou.edu.cn)

    DOI:10.3788/LOP56.160101

    Topics