Chinese Optics Letters, Volume. 19, Issue 11, 110601(2021)

Compensation of turbulence-induced wavefront aberration with convolutional neural networks for FSO systems

Min’an Chen, Xianqing Jin*, Shangbin Li, and Zhengyuan Xu**
Author Affiliations
  • CAS Key Laboratory of Wireless-Optical Communications, University of Science and Technology of China, Hefei 230027, China
  • show less
    References(25)

    [1] H. Kaushal, G. Kaddoum. Optical communication in space: challenges and mitigation techniques. IEEE Comm. Surv. Tutor., 19, 57(2017).

    [2] T. Shan, J. Ma, T. Wu, Z. Shen, P. Su. Single scattering turbulence model based on the division of effective scattering volume for ultraviolet communication. Chin. Opt. Lett., 18, 120602(2020).

    [3] X. Yan, L. Guo, M. Cheng, S. Chai. Free-space propagation of autofocusing Airy vortex beams with controllable intensity gradients. Chin. Opt. Lett., 17, 040101(2019).

    [4] C. Liu, M. Chen, S. Chen, H. Xian. Adaptive optics for the free-space coherent optical communications. Opt. Commun., 361, 21(2016).

    [5] M. Li, W. Gao, M. Cvijetic. Slant-path coherent free space optical communications over the maritime and terrestrial atmospheres with the use of adaptive optics for beam wavefront correction. Appl. Opt., 56, 284(2017).

    [6] Y. Liu, J. Ma, B. Li, J. Chu. Hill-climbing algorithm based on Zernike modes for wavefront sensorless adaptive optics. Opt. Eng., 52, 016601(2013).

    [7] P. Piatrou, M. Roggemann. Beaconless stochastic parallel gradient descent laser beam control: numerical experiments. Appl. Opt., 46, 6831(2007).

    [8] Z. Li, J. Cao, X. Zhao, W. Liu. Atmospheric compensation in free space optical communication with simulated annealing algorithm. Opt. Commun., 338, 11(2015).

    [9] J. Liu, P. Wang, X. Zhang, Y. He, X. Zhou, H. Ye, Y. Li, S. Xu, S. Chen, D. Fan. Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication. Opt. Express, 27, 16671(2019).

    [10] S. W. Paine, J. R. Fienup. Machine learning for improved image-based wavefront sensing. Opt. Lett., 43, 1235(2018).

    [11] Y. Jin, Y. Zhang, L. Hu, H. Huang, Q. Xu, X. Zhu, L. Huang, Y. Zheng, H. Shen, W. Gong, K. Si. Machine learning guided rapid focusing with sensor-less aberration corrections. Opt. Express, 26, 30162(2018).

    [12] Q. Tian, C. Lu, B. Liu, L. Zhu, X. Pan, Q. Zhang, L. Yang, F. Tian, X. Xin. DNN-based aberration correction in a wavefront sensorless adaptive optics system. Opt. Express, 27, 10765(2019).

    [13] Y. Nishizaki, M. Valdivia, R. Horisaki, K. Kitaguchi, M. Saito, J. Tanida, E. Vera. Deep learning wavefront sensing. Opt. Express, 27, 240(2019).

    [14] R. Swanson, M. Lamb, C. Correia, S. Sivanandam, K. Kutulakos. Wavefront reconstruction and prediction with convolutional neural networks. Proc. SPIE, 10703, 107031F(2018).

    [15] Z. Li, X. Zhao. BP artificial neural network based wave front correction for sensor-less free space optics communication. Opt. Commun., 385, 219(2017).

    [16] K. Hu, B. Xu, Z. Xu, L. Wen, P. Yang, S. Wang, L. Dong. Self-learning control for wavefront sensorless adaptive optics system through deep reinforcement learning. Optik, 178, 785(2019).

    [17] S. Lohani, R. T. Glasser. Turbulence correction with artificial neural networks. Opt. Lett., 43, 2611(2018).

    [18] M. Chen, X. Jin, Z. Xu. Investigation of convolution neural network-based wavefront correction for FSO systems. International Conference on Wireless Communication and Signal Processing, 1(2019).

    [19] R. J. Noll. Zernike polynomials and atmosphereic turbulence. J. Opt. Soc. Am. A, 66, 207(1976).

    [20] N. A. Roddier. Atmospheric wavefront simulation using Zernike polynomials. Opt. Eng., 29, 1174(1990).

    [21] X. Yin, X. Chen, H. Chang, X. Cui, Y. Su, Y. Guo, Y. Wang, X. Xin. Experimental study of atmospheric turbulence detection using an orbital angular momentum beam via a convolutional neural network. IEEE Access, 7, 184235(2019).

    [22] S. B. Driss, M. Soua, R. Kachouri, M. Akil. A comparison study between MLP and convolutional neural network models for character recognition. Proc. SPIE, 10223, 1022306(2017).

    [23] A. Krizhevsky, I. Sutskever, G. E. Hinton. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 1097(2012).

    [24] D. G. Sandler, T. K. Barrett, D. A. Palmer, R. Q. Fugate, W. J. Wild. Use of a neural network to control an adaptive optics system for an astronomical telescope. Nature, 351, 300(1991).

    [25] G. Xu, X. Zhang, J. Wei, X. Fu. Influence of atmospheric turbulence on FSO link performance. Proc. SPIE, 5281, 816(2004).

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Min’an Chen, Xianqing Jin, Shangbin Li, Zhengyuan Xu, "Compensation of turbulence-induced wavefront aberration with convolutional neural networks for FSO systems," Chin. Opt. Lett. 19, 110601 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Mar. 4, 2021

    Accepted: Apr. 15, 2021

    Posted: Apr. 16, 2021

    Published Online: Aug. 13, 2021

    The Author Email: Xianqing Jin (xqjin@ustc.edu.cn), Zhengyuan Xu (xuzy@ustc.edu.cn)

    DOI:10.3788/COL202119.110601

    Topics