Laser & Optoelectronics Progress, Volume. 60, Issue 5, 0500004(2023)

Research Progress of Adaptive Optics in Satellite-to-Ground Laser Communication

Yue Xu1,2,3, Chao Liu1,2、*, Bin Lan1,2, Mo Chen1,2, Daoman Rui1,2, Tianjun Dai1,2, and Hao Xian1,2
Author Affiliations
  • 1Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, Sichuan, China
  • 2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, Sichuan, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(37)

    [1] Jiang H L, Fu Q, Zhao Y W et al. Development status and trend of space information network and laser communication[J]. Chinese Journal on Internet of Things, 3, 1-8(2019).

    [3] Andrews L C, Phillips R L[M]. Laser beam propagation through random media(2005).

    [4] Motlagh A C, Ahmadi V, Ghassemlooy Z et al. The effect of atmospheric turbulence on the performance of the free space optical communications[C], 540-543(2008).

    [5] Belmonte A, Kahn J M. Capacity of coherent free-space optical links using diversity-combining techniques[J]. Optics Express, 17, 12601-12611(2009).

    [6] Andrews L C. Aperture-averaging factor for optical scintillations of plane and spherical waves in the atmosphere[J]. Journal of the Optical Society of America A, 9, 597-600(1992).

    [7] Sampson R, Liu H Y, Su X Z et al. Turbulence-resistant free-space communication using few-mode pre-amplifiers[J]. Proceedings of SPIE, 10947, 1094707(2019).

    [8] Nicolas P, Daniel F. Aperture averaging: theory and measurements[J]. Physica A: Statistical Mechanics and its Applications, 5338, 233-242(2004).

    [9] Jiang L, Dai Z S, Yu X et al. Experimental demonstration of a single-mode fiber coupling over a 1 km urban path with adaptive optics[J]. Journal of Russian Laser Research, 42, 363-370(2021).

    [10] Rui D M, Liu C, Chen M et al. Probability enhancement of fiber coupling efficiency under turbulence with adaptive optics compensation[J]. Optical Fiber Technology, 60, 102343(2020).

    [11] Liu C, Chen M, Chen S Q et al. Adaptive optics for the free-space coherent optical communications[J]. Optics Communications, 361, 21-24(2016).

    [12] Chen M, Liu C, Rui D M et al. Experimental results of 5-Gbps free-space coherent optical communications with adaptive optics[J]. Optics Communications, 418, 115-119(2018).

    [13] Chen M, Liu C, Rui D M et al. Highly sensitive fiber coupling for free-space optical communications based on an adaptive coherent fiber coupler[J]. Optics Communications, 430, 223-226(2019).

    [14] Osborn J, Townson M J, Farley O J D et al. Adaptive Optics pre-compensated laser uplink to LEO and GEO[J]. Optics Express, 29, 6113-6132(2021).

    [15] Wu J L, Ke X Z. Development of adaptive optical correction and polarization control modules for 10-km free-space coherent optical communications[J]. Journal of Modern Optics, 67, 189-195(2020).

    [16] Saathof R, den Breeje R, Klop W et al. Pre-correction adaptive optics performance for a 10 km laser link[J]. Proceedings of SPIE, 10910, 109101H(2019).

    [17] Védrenne N, Conan J M, Petit C et al. Adaptive optics for high data rate satellite to ground laser link[J]. Proceedings of SPIE, 9739, 119-128(2016).

    [18] Wilson K E, Leatherman P R, Cleis R et al. Results of the compensated earth-moon-earth retroreflector laser link (CEMERLL) experiment: TDA Progress Report 42-131[R](1997).

    [19] Oaida B V, Wu W, Erkmen B I et al. Optical link design and validation testing of the Optical Payload for Lasercomm Science (OPALS) system[J]. Proceedings of SPIE, 8971, 235-249(2014).

    [20] Wright M W, Morris J F, Kovalik J M et al. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink[J]. Optics Express, 23, 33705-33712(2015).

    [21] Wright M W, Kovalik J, Morris J et al. LEO-to-ground optical communications link using adaptive optics correction on the OPALS downlink[J]. Proceedings of SPIE, 9739, 19-28(2016).

    [22] Israel D J[M]. Laser communications relay demonstration: introduction for experimenters(2017).

    [23] Roberts L C, Jr, Burruss R, Fregoso S et al. The adaptive optics and transmit system for NASA’s Laser Communications Relay Demonstration project[J]. Proceedings of SPIE, 9979, 99790I(2016).

    [24] Hayano Y, Arimoto Y, Klaus W. Ground-to-satellite laser communication program at CRL using adaptive optics[J]. Proceedings of SPIE, 3126, 208-215(1997).

    [25] Hayano Y, Klaus W, Arimoto Y. Prototype adaptive optics system for ground-to-satellite laser communication[J]. Proceedings of SPIE, 3353, 726-734(1998).

    [26] Kubo-Oka T, Kunimori H, Suzuki K et al. Development of “HICALI”: high speed optical feeder link system between GEO and ground[J]. Proceedings of SPIE, 11180, 2158-2165(2019).

    [27] Berkefeld T, Soltau D, Czichy R et al. Adaptive optics for satellite-to-ground laser communication at the 1 m Telescope of the ESA Optical Ground Station, Tenerife, Spain[J]. Proceedings of SPIE, 7736, 1539-1546(2010).

    [28] Gregory M, Troendle D, Muehlnikel G et al. Three years coherent space to ground links: performance results and outlook for the optical ground station equipped with adaptive optics[J]. Proceedings of SPIE, 8610, 17-29(2013).

    [29] Saucke K, Seiter C, Heine F et al. The Tesat transportable adaptive optical ground station[J]. Proceedings of SPIE, 9739, 973906(2016).

    [30] Fischer E, Berkefeld T, Feriencik M et al. Development, integration and test of a transportable adaptive optical ground station[C](2015).

    [31] Heine F, Pimentel P M, Rochow C et al. The European data relay system and Alphasat to T-AOGS space to ground links, status, and achievements in 2017[J]. Proceedings of SPIE, 10524, 105240T(2018).

    [32] Saucke K, Mahn R, Pimentel P M et al. Three years of optical satellite to ground links with the T-AOGS: data transmission and characterization of atmospheric conditions[J]. Proceedings of SPIE, 11180, 111801D(2019).

    [33] Fischer E, Feriencik M, Kudielka K et al. (Invited) Upgrade of ESA optical ground station with adaptive optics for high data rate satellite-to-ground links[C], 63-70(2017).

    [34] Fischer E, Feriencik M, Kudielka K et al. ESA optical ground station upgrade with adaptive optics for high data rate satellite-to-ground links-test results[C](2019).

    [35] Bonnefois A M, Conan J M, Petit C et al. Adaptive optics pre-compensation for GEO feeder links: the FEEDELIO experiment[J]. Proceedings of SPIE, 11180, 889-896(2019).

    [36] Védrenne N, Conan J, Bonnefois A et al. Adaptive optics pre-compensation for GEO feeder links: Towards an experimental demonstration[C], 77-81(2017).

    [38] Rui D M, Liu C, Chen M et al. Application of adaptive optics on the satellite laser communication ground station[J]. Opto-Electronic Engineering, 45, 170647(2018).

    [39] Cui Y, Tang Y. The in-orbit core test of practical satellite No.20 was completed[J]. Space International, 38-41(2020).

    Tools

    Get Citation

    Copy Citation Text

    Yue Xu, Chao Liu, Bin Lan, Mo Chen, Daoman Rui, Tianjun Dai, Hao Xian. Research Progress of Adaptive Optics in Satellite-to-Ground Laser Communication[J]. Laser & Optoelectronics Progress, 2023, 60(5): 0500004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jan. 20, 2022

    Accepted: Feb. 25, 2022

    Published Online: Mar. 6, 2023

    The Author Email: Chao Liu (liuchao@ioe.ac.cn)

    DOI:10.3788/LOP220582

    Topics