Acta Optica Sinica, Volume. 39, Issue 3, 0322001(2019)

Optimization Design of Supporting Backplate for Ultra-Light Space Camera

Mengqi Shao1,2、*, Lei Zhang1,3、*, Lin Li1,2, and Lei Wei3
Author Affiliations
  • 1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
  • 2 University of Chinese Academy of Sciences, Beijing 100049, China
  • 3 Chang Guang Satellite Technology Co. Ltd., Changchun, Jilin 130031, China
  • show less
    Figures & Tables(18)
    Model of primary mirror
    Flexible supporting part
    Boundary dimension parameters of backplate
    Connection between backplate and other structures
    Finite element models of initial structure of backplate. (a) Initially designed finite element model; (b) initial structure finite element model of constraint
    Iterative convergence curve
    (a) Topological optimization result of initial structure of backplate; (b) processed backplate model
    Parameter variables of supporting backplate structure
    Procedure of optimization iteration
    Supporting backplate model after optimization. (a) Obverse side; (b) reverse side
    Displacement cloud image of mirror surface
    First order intrinsic mode shape of mirror assembly
    • Table 1. Performance parameters and comprehensive quality factors of commonly used spatial structural materials

      View table

      Table 1. Performance parameters and comprehensive quality factors of commonly used spatial structural materials

      MaterialDensity /(g·cm-3)Elasticity modulus /GPaThermal conductivity /(W·m-1·K-1)Coefficient of linear expansion /(106 m·℃-1)Specific stiffness /(N·tex-1)Thermostability /(106 W·m-2)Quality factor
      Al2.7068167.0022.5025.197.42186.97
      Ti4.401147.409.1025.910.8121.07
      MgAl1.8040201.0025.0022.228.04178.65
      4J32 invar alloy8.9014113.700.6515.8421.08333.86
      35%SiC/Al3.00100155.0016.0033.339.69322.88
      55%SiC/Al2.94213235.008.0072.4029.382126.75
      SiC3.20400155.002.40125.0064.588072.92
    • Table 2. Designed variables and optimized results

      View table

      Table 2. Designed variables and optimized results

      VariableRange /mmInitial value /mmOptimization result /mm
      Bh[2,4]3.02.0
      H[9,13]13.59.6
      Tc[2,4]5.02.2
      Tic[2,4]3.02.2
      TL1[2,4]5.02.1
      TL2[2,4]5.02.5
    • Table 3. Surface analysis and accuracy comparison

      View table

      Table 3. Surface analysis and accuracy comparison

      LoadFace shape precision
      RMS /nmPeak to valley /nm
      25℃0.1580.781
      FX1.1695.403
      FZ4.06917.620
      FX+25 ℃1.2216.181
      FZ+25 ℃3.95318.190
    • Table 4. First three order modal information of mirror assembly

      View table

      Table 4. First three order modal information of mirror assembly

      Swing around Z axis /HzVibration along X axis /HzVibration along Y axis /HzMass of supporting backplate /kg
      3974094100.591
    • Table 5. Conditions of random vibration test

      View table

      Table 5. Conditions of random vibration test

      ParameterDirection along XDirection along YDirection along Z
      Frequency range /Hz10-8080-800800-2000
      Power spectral density /(g2·Hz-1)+3 dB/oct0.01-6 dB/oct
      Root-mean-square(RMS)3.56g
    • Table 6. Analysis result of random response

      View table

      Table 6. Analysis result of random response

      DirectionXYZ
      Result of random vibration analysis(RMS)10.98g10.91g15.45g
    Tools

    Get Citation

    Copy Citation Text

    Mengqi Shao, Lei Zhang, Lin Li, Lei Wei. Optimization Design of Supporting Backplate for Ultra-Light Space Camera[J]. Acta Optica Sinica, 2019, 39(3): 0322001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Jun. 12, 2018

    Accepted: Oct. 30, 2018

    Published Online: May. 10, 2019

    The Author Email:

    DOI:10.3788/AOS201939.0322001

    Topics