Laser & Optoelectronics Progress, Volume. 61, Issue 4, 0437010(2024)

Multi-Scale Feature Extraction Method of Hyperspectral Image with Attention Mechanism

Zhangchi Xu, Baofeng Guo*, Wenhao Wu, Jingyun You, and Xiaotong Su
Author Affiliations
  • School of Automation, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
  • show less
    Figures & Tables(14)
    Structure of spatial attention network
    Structure of SeAMN
    Structure of spectral attention network
    Structure of SaAMN
    Structure of Conv-attention model
    Structure of multiscale feature extraction method with attention mechanism
    Overall accuracy of proposed method by running 10 experiments independently with different hyperparameters. (a) Performance of SaAMN with different kernel sizes; (b) performance of SeAMN with different hidden sizes; (c) performance of SeAMN with different grouping strategies
    • Table 1. Categories and settings of Pavia University dataset

      View table

      Table 1. Categories and settings of Pavia University dataset

      ClassClass NameTraining numberTotal number
      Total90042776
      1Asphalt1006631
      2Meadows10018649
      3Gravel1002099
      4Trees1003064
      5Painted metal sheets1001345
      6Bare soil1005029
      7Bitumen1001330
      8Self-blocking bricks1003682
      9Shadows100947
    • Table 2. Categories and settings of KSC dataset

      View table

      Table 2. Categories and settings of KSC dataset

      ClassClass NameTraining numberTotal number
      Total4595211
      1Scrub33761
      2Willow swamp23243
      3CP hammock24256
      4CP/Oak24252
      5Slash pine15161
      6Oak/Broadleaf22229
      7Hardwood swamp9105
      8Graminoid marsh38431
      9Spartina marsh51520
      10Catiail marsh39404
      11Salt marsh41419
      12Mud flats49503
      13Water91927
    • Table 3. Categories and settings of Indian Pines dataset

      View table

      Table 3. Categories and settings of Indian Pines dataset

      ClassClass NameTraining numberTotal number
      Total134210249
      1Alfalfa3346
      2Corn-notill1001428
      3Corn-mintill100830
      4Corn100237
      5Grass-pasture100483
      6Grass-trees100730
      7Grass-pasture-mowed2028
      8Hay-windrowed100478
      9Oats1420
      10Soybean-notill100972
      11Soybean-mintill1002455
      12Soybean-clean100593
      13Wheat100205
      14Woods1001265
      15Buildings-Grass-Trees-Drives100386
      16Stone-Steel-Towers7593
    • Table 4. Settings of proposed method

      View table

      Table 4. Settings of proposed method

      MethodDatasetSplitHidden sizeKernel size
      SeAMNIndian Pines8-4-2-175
      Pavia University8-4-2-175
      KSC16-8-4-275
      SaAMNIndian Pines3
      Pavia University3
      KSC3

      Proposed

      method

      Indian Pines8-4-2-1753
      Pavia University8-4-2-1753
      KSC32-16-8-4753
    • Table 5. Classification results of different feature extraction methods on KSC dataset

      View table

      Table 5. Classification results of different feature extraction methods on KSC dataset

      MethodSpectral feature extraction methodSpatial feature extraction methodJoint feature extraction method
      1DCNN

      LSTM

      -byb

      LSTM

      -split

      SeMNSeAMN2DCNNSaMNSaAMNSSUNASSMN

      Proposed

      method

      OA /%

      AP

      SD

      85.81

      ±1.26

      68.11

      ±1.90

      73.00

      ±1.64

      88.03

      ±1.06

      88.55

      ±0.82

      96.58

      ±0.51

      96.80

      ±1.54

      97.47

      ±1.65

      97.43

      ±0.65

      98.01

      ±0.77

      98.46

      ±0.50

      AA /%

      AP

      SD

      78.90

      ±2.49

      55.56

      ±3.12

      61.50

      ±1.89

      82.71

      ±1.36

      83.23

      ±1.40

      95.85

      ±0.73

      95.91

      ±1.98

      96.94

      ±2.21

      96.84

      ±0.61

      97.32

      ±1.15

      98.00

      ±0.80

      KC×100%

      AP

      SD

      84.21

      ±1.40

      64.40

      ±2.18

      69.93

      ±1.83

      86.68

      ±1.18

      87.25

      ±0.91

      96.19

      ±0.56

      96.44

      ±1.71

      97.18

      ±1.84

      97.14

      ±0.72

      97.78

      ±0.86

      98.29

      ±0.56

      TrnTime /s

      AP

      SD

      7.14

      ±0.66

      46.84

      ±0.43

      10.93

      ±0.22

      30.02

      ±0.88

      50.54

      ±1.10

      13.28

      ±0.32

      225.88

      ±9.46

      243.11

      ±6.01

      96.46

      ±4.63

      246.37

      ±5.83

      313.15

      ±1.20

      Classification accuracy /%187.4374.7775.8785.9688.1392.1294.1694.1194.7496.3596.91
      287.6469.1870.5987.8284.8294.5593.6496.7396.8696.8298.41
      375.6532.8952.1686.6887.5496.6494.3594.2297.7696.8597.97
      448.6820.8339.3461.5464.9688.4289.6191.1490.3991.4594.04
      550.8240.2741.2360.0755.3499.0496.3097.1292.7497.0597.26
      649.2314.4936.8156.8155.9988.8495.3196.4393.1493.1994.59
      768.0213.132.8171.9878.9693.2392.5095.5299.4896.5697.60
      884.8632.6540.9784.3586.3998.1992.8596.2696.3198.0498.02
      992.2882.4385.6194.5695.0399.0499.7299.8799.8599.3099.62
      1094.0369.3477.1896.4794.9398.3399.75100.0099.4299.7899.92
      1196.6492.3594.4296.0396.8099.87100.00100.0098.6099.8199.74
      1290.4880.2982.6993.0493.0697.8298.6398.8399.63100.0099.93
      1399.8999.6899.8999.9999.98100.00100.00100.00100.00100.00100.00
    • Table 6. Classification results of different feature extraction methods on Pavia University dataset

      View table

      Table 6. Classification results of different feature extraction methods on Pavia University dataset

      MethodSpectral feature extraction methodSpatial feature extraction methodJoint feature extraction method
      1DCNN

      LSTM

      -byb

      LSTM

      -split

      SeMNSeAMN2DCNNSaMNSaAMNSSUNASSMN

      Proposed

      method

      OA /%

      AP

      SD

      78.37

      ±2.29

      71.28

      ±6.20

      69.36

      ±1.86

      82.94

      ±2.47

      85.91

      ±1.14

      90.26

      ±1.10

      92.97

      ±2.40

      93.93

      ±1.26

      94.71

      ±1.03

      95.95

      ±1.38

      96.61

      ±1.04

      AA /%

      AP

      SD

      86.75

      ±0.40

      80.85

      ±3.85

      81.34

      ±0.91

      87.72

      ±1.07

      89.49

      ±0.74

      93.68

      ±0.66

      95.61

      ±1.18

      96.02

      ±0.73

      96.95

      ±0.32

      97.77

      ±0.48

      97.72

      ±0.51

      KC×100%

      AP

      SD

      72.56

      ±2.54

      64.36

      ±6.93

      61.96

      ±1.82

      77.96

      ±3.06

      81.69

      ±1.45

      87.27

      ±1.40

      90.80

      ±3.08

      92.02

      ±1.62

      93.04

      ±1.33

      94.66

      ±1.80

      95.51

      ±1.35

      TrnTime /s

      AP

      SD

      12.89

      ±0.73

      49.43

      ±0.42

      21.52

      ±0.50

      61.85

      ±0.28

      78.80

      ±0.59

      25.90

      ±0.32

      387.25

      ±4.32

      416.77

      ±15.24

      178.83

      ±11.70

      442.47

      ±23.50

      569.15

      ±2.32

      Classification accuracy /%177.4770.2871.6182.3482.7688.3190.9092.6593.6695.9595.32
      270.9462.2857.8979.9484.2287.4790.4492.1092.4194.1596.10
      382.0359.6970.7379.3481.6088.2989.4790.5095.5797.1995.85
      494.4393.4495.7693.4994.5394.8497.2097.8299.4299.1799.16
      599.6697.8798.8099.1599.6199.9499.9799.9899.8299.9999.98
      679.8478.6070.8181.8887.1990.3497.0996.2596.5696.7496.52
      792.7190.3791.5991.9391.7497.2799.1199.0197.7699.4899.45
      883.6775.2474.9481.5283.9097.5796.4395.9897.5997.2997.08
      9100.0099.8599.9599.8999.8399.1099.8799.8999.80100.0099.99
    • Table 7. Classification results of different feature extraction methods on Indian Pines dataset

      View table

      Table 7. Classification results of different feature extraction methods on Indian Pines dataset

      MethodSpectral feature extraction methodSpatial feature extraction methodJoint feature extraction method
      1DCNN

      LSTM

      -byb

      LSTM

      -split

      SeMNSeAMN2DCNNSaMNSaAMNSSUNASSMN

      Proposed

      method

      OA /%

      AP

      SD

      80.46

      ±1.41

      64.26

      ±4.74

      71.49

      ±1.54

      75.28

      ±2.70

      77.78

      ±2.40

      95.87

      ±0.72

      97.36

      ±0.72

      97.71

      ±0.38

      96.28

      ±0.78

      96.79

      ±0.72

      98.13

      ±0.37

      AA /%

      AP

      SD

      87.44

      ±1.84

      72.31

      ±4.99

      79.06

      ±2.07

      81.97

      ±3.07

      84.16

      ±2.69

      98.29

      ±0.28

      98.69

      ±0.40

      98.82

      ±0.25

      98.50

      ±0.01

      98.60

      ±0.48

      99.03

      ±0.29

      KC×100%

      AP

      SD

      77.66

      ±1.57

      59.51

      ±5.22

      67.58

      ±1.70

      71.80

      ±3.03

      74.64

      ±2.68

      95.22

      ±0.83

      96.94

      ±0.83

      97.34

      ±0.44

      95.69

      ±0.90

      96.28

      ±0.83

      97.84

      ±0.43

      TrnTime /s

      AP

      SD

      20.34

      ±0.68

      203.95

      ±0.66

      32.92

      ±0.63

      79.25

      ±0.59

      110.56

      ±0.40

      38.20

      ±0.33

      667.89

      ±3.75

      639.32

      ±38.31

      273.34

      ±4.69

      626.90

      ±4.94

      745.69

      ±47.65

      Classification accuracy /%195.3881.5486.1585.3882.31100.00100.0099.23100.00100.00100.00
      278.5257.0663.3169.7270.4594.1093.3595.3893.5293.3596.31
      377.0756.0870.2670.0472.1597.5198.2197.9098.8598.0598.85
      490.5865.5584.0187.2384.89100.00100.00100.0099.8599.7899.64
      582.9284.9378.2885.3391.7099.0398.3698.9699.1698.7298.04
      693.3280.2189.1088.5195.3599.7899.1399.0899.6599.8699.86
      795.0078.7588.7586.2581.25100.00100.00100.00100.0098.7598.75
      897.9992.7896.0895.8797.25100.0099.97100.00100.00100.00100.00
      988.3358.3370.0075.0085.00100.00100.00100.00100.00100.00100.00
      1086.1668.3083.1380.3683.5794.6696.1197.3295.0397.2197.80
      1170.5348.1562.6564.4665.5391.7797.2497.0193.1294.3797.05
      1287.6160.1269.9477.6379.9097.7198.0197.6399.2798.8898.80
      1398.7696.3897.0597.9098.48100.00100.0099.9099.4399.8199.81
      1481.1882.2470.2383.1686.3198.7698.9499.0898.1198.7599.56
      1578.5057.0659.4165.8775.2199.9799.7699.5899.97100.0099.97
      1697.2289.4496.6798.8997.2299.44100.00100.00100.00100.00100.00
    Tools

    Get Citation

    Copy Citation Text

    Zhangchi Xu, Baofeng Guo, Wenhao Wu, Jingyun You, Xiaotong Su. Multi-Scale Feature Extraction Method of Hyperspectral Image with Attention Mechanism[J]. Laser & Optoelectronics Progress, 2024, 61(4): 0437010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Mar. 28, 2023

    Accepted: May. 4, 2023

    Published Online: Feb. 26, 2024

    The Author Email: Baofeng Guo (gbf@hdu.edu.cn)

    DOI:10.3788/LOP230974

    CSTR:32186.14.LOP230974

    Topics