Acta Optica Sinica, Volume. 42, Issue 14, 1415003(2022)

Occluded Pedestrian Detection Algorithm Based on Improved YOLOv3

Xiang Li1,2,3,4, Miao He1,2,3, and Haibo Luo1,2,3、*
Author Affiliations
  • 1Key Laboratory of Opto-Electronic Information Processing, Chinese Academy of Sciences, Shenyang 110016, Liaoning , China
  • 2Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, Liaoning , China
  • 3Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, Liaoning , China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(27)

    [1] Sun Y C, Pan S G, Zhao T et al. Traffic light detection based on optimized YOLOv3 algorithm[J]. Acta Optica Sinica, 40, 1215001(2020).

    [2] Mou L C, Zhu X X. Spatiotemporal scene interpretation of space videos via deep neural network and tracklet analysis[C], 1823-1826(2016).

    [3] Kopsiaftis G, Karantzalos K. Vehicle detection and traffic density monitoring from very high resolution satellite video data[C], 1881-1884(2015).

    [4] Guo L, Ma Y, Yue M et al. Overview of recognition and evaluation of driving characteristics and their applications in intelligent vehicles[J]. Journal of Traffic and Transportation Engineering, 21, 7-20(2021).

    [5] Wang R M, Zhu Y, Zhao X M et al. Research progress on test scenario of autonomous driving[J]. Journal of Traffic and Transportation Engineering, 21, 21-37(2021).

    [6] Shen H, Li S M, Bo F C et al. On road vehicles real-time detection and tracking using vision based approach[J]. Acta Optica Sinica, 30, 1076-1083(2010).

    [7] Zhao L, Hu J, Liu H et al. Deep learning based on semantic segmentation for three-dimensional object detection from point clouds[J]. Chinese Journal of Lasers, 48, 1710004(2021).

    [8] Hu J, Liu H, Xu W C et al. Position detection algorithm of road obstacles based on 3D LiDAR[J]. Chinese Journal of Lasers, 48, 2410001(2021).

    [9] Nong Y J, Wang J J. Real-time object detection in remote sensing images based on embedded system[J]. Acta Optica Sinica, 41, 1028001(2021).

    [10] Nong Y J, Wang J J, Zhao X B et al. Spatial relationship detection method of remote sensing objects[J]. Acta Optica Sinica, 41, 1628001(2021).

    [11] Ji D F, Ding X M. Specific region decorrelation feature channel on pedestrian detection[J]. Information and Control, 49, 401-413(2020).

    [12] Xuan Y, Han C, Sha W H. Improved Tiny Yolov4 algorithm in pedestrian detection[J]. Laser & Optoelectronics Progress, 59, 1215002(2022).

    [13] Liu T G, Liu K, Dai L et al. Research progress of key technologies in recognition sensing for opto-electronic information and event[J]. Acta Optica Sinica, 41, 0106002(2021).

    [14] Bodla N, Singh B, Chellappa R et al. Soft-NMS: improving object detection with one line of code[C], 5562-5570(2017).

    [15] Liu S T, Huang D, Wang Y H. Adaptive NMS: refining pedestrian detection in a crowd[C], 6452-6461(2019).

    [16] Ma J, Wan H L, Wang J X et al. An improved one-stage pedestrian detection method based on multi-scale attention feature extraction[J]. Journal of Real-Time Image Processing, 18, 1965-1978(2021).

    [17] Zou Z Y, Gai S Y, Da F P et al. Occluded pedestrian detection algorithm based on attention mechanism[J]. Acta Optica Sinica, 41, 1515001(2021).

    [20] Wang C Y, Bochkovskiy A, Liao H Y M. Scaled-YOLOv4: scaling cross stage partial network[C], 13024-13033(2021).

    [23] Zheng Z H, Wang P, Liu W et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 12993-13000(2020).

    [24] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018, 11211, 3-19(2018).

    [26] Rukhovich D, Sofiiuk K, Galeev D et al. IterDet: iterative scheme for object detection in crowded environments[M]. Torsello A, Rossi L, Pelillo M, et al. Structural, syntactic, and statistical pattern recognition. Lecture notes in computer science, 12644, 344-354(2021).

    [27] Ge Z, Jie Z Q, Huang X et al. PS-RCNN: detecting secondary human instances in a crowd via primary object suppression[C], 19870687(2020).

    Tools

    Get Citation

    Copy Citation Text

    Xiang Li, Miao He, Haibo Luo. Occluded Pedestrian Detection Algorithm Based on Improved YOLOv3[J]. Acta Optica Sinica, 2022, 42(14): 1415003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Jan. 7, 2022

    Accepted: Feb. 14, 2022

    Published Online: Jul. 15, 2022

    The Author Email: Luo Haibo (luohb@sia.cn)

    DOI:10.3788/AOS202242.1415003

    Topics