Journal of the Chinese Ceramic Society, Volume. 53, Issue 7, 1873(2025)

First Principles Calculation on Electrochemical Stability and Ion Transport of Antiperovskite Type X3OBH4 (X=Li, Na)

LIU Bo1, ZHONG Wei1, JIANG Daguo1, WU Donglan1, FANG Cheng1, XIAO Zhipeng1, and SHI Siqi2
Author Affiliations
  • 1College of Mathematics and Physics, Jinggangshan University, Ji'an 343009, Jiangxi, China
  • 2School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
  • show less
    References(55)

    [1] [1] FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nat c, 2019, 18: 1278–1291.

    [2] [2] ZHANG S, MA J, DONG S M, et al. Designing all-solid-state batteries by theoretical computation: A review[J]. Electrochem Energy Rev, 2023, 6(1): 4.

    [3] [3] DAWSON J A, FAMPRIKIS T, JOHNSTON K E. Anti-perovskites for solid-state batteries: Recent developments, current challenges and future prospects[J]. J Mater Chem A, 2021, 9(35): 18746–18772.

    [4] [4] DENG Z, NI D X, CHEN D C, et al. Anti-perovskite materials for energy storage batteries[J]. InfoMat, 2022, 4(2): e12252.

    [5] [5] XIA W, ZHAO Y, ZHAO F P, et al. Antiperovskite electrolytes for solid-state batteries[J]. Chem Rev, 2022, 122(3): 3763–3819.

    [6] [6] ZHAO Y S, DAEMEN L L. Superionic conductivity in lithium-rich anti-perovskites[J]. J Am Chem Soc, 2012, 134(36): 15042–15047.

    [7] [7] CHEN M, EMLY A, KIOUPAKIS E, VAN DER VEN A. Anharmonicity and phase stability of antiperovskite Li3OCI[J]. Phys Rev B, 2014, 91:214306.

    [8] [8] WANG Y G, WANG Q F, LIU Z P, et al. Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites[J]. J Power Sources, 2015, 293: 735–740.

    [9] [9] SUN Y L, WANG Y C, LIANG X M, et al. Rotational cluster anion enabling superionic conductivity in sodium-rich antiperovskite Na3OBH4[J]. J Am Chem Soc, 2019, 141(14): 5640–5644.

    [10] [10] FANG H, JENA P. Li-rich antiperovskite superionic conductors based on cluster ions[J]. Proc Natl Acad Sci USA, 2017, 114(42): 11046–11051.

    [11] [11] ZHAO Q F, GUO J P, SU M Y, et al. Design principles for rotational cluster anion [BH4]– promote superionic conductivity in sodium-rich antiperovskite Na3OBH4[J]. J Phys Chem C, 2022, 126(38): 16546–16555.

    [12] [12] SUN M C, SUN C Q, WANG Y, et al. Theoretical investigation of Li-rich anti-perovskite with cluster anion for solid electrolytes[J]. Solid State Ion, 2023, 403: 116395.

    [13] [13] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys Rev B, 1999, 59(3): 1758–1775.

    [14] [14] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865–3868.

    [15] [15] HE B, CHI S T, YE A J, et al. High-throughput screening platform for solid electrolytes combining hierarchical ion-transport prediction algorithms[J]. Sci Data, 2020, 7(1): 151.

    [16] [16] HIMANEN L, GEURTS A, FOSTER A S, et al. Data-driven materials science: Status, challenges, and perspectives[J]. Adv Sci, 2019, 6(21): 1900808.

    [17] [17] SCHAARSCHMIDT J, YUAN J, STRUNK T, et al. Workflow engineering in materials design within the BATTERY 2030+ project[J]. Adv Energy Mater, 2022, 12(17): 2102638.

    [18] [18] HE B, MI P H, YE A J, et al. A highly efficient and informative method to identify ion transport networks in fast ion conductors[J]. Acta Mater, 2021, 203: 116490.

    [19] [19] HE B, YE A J, CHI S T, et al. CAVD, towards better characterization of void space for ionic transport analysis[J]. Sci Data, 2020, 7(1): 153.

    [20] [20] SHI W, HE B, PU B W, et al. Software for evaluating long-range electrostatic interactions based on the Ewald summation and its application to electrochemical energy storage materials[J]. J Phys Chem A, 2022, 126(31): 5222–5230.

    [21] [21] DING Y Q, HE B, WANG D, et al. Software for evaluating ionic conductivity of inorganic–polymer composite solid electrolytes[J]. Energy Mater Adv, 2023, 4: 41.

    [23] [23] LIN S, LIN Y X, HE B, et al. Reclaiming neglected compounds as promising solid state electrolytes by predicting electrochemical stability window with dynamically determined decomposition pathway[J]. Adv Energy Mater, 2022, 12(45): 2201808.

    [24] [24] HE B, MENG Y, GONG Z M, et al. EMFDTW: An automated crystallographic identification tool supporting multiple comparison criteria[J]. Cryst Growth Des, 2024, 24(13): 5559–5568.

    [25] [25] ZHANG L W, HE B, ZHAO Q, et al. A database of ionic transport characteristics for over 29 000 inorganic compounds[J]. Adv Funct Mater, 2020, 30(35): 2003087.

    [26] [26] WANG X Y, HE B, LIU B, et al. A database of electrochemical stability windows containing over 1500 solid-state inorganic compounds[J]. Adv Funct Mater, 2024, 34(44): 2406146.

    [27] [27] LIU B, HU Q L, GAO T Y, et al. Computational insights into the ionic transport mechanism and interfacial stability of the Li2OHCl solid-state electrolyte[J]. J Materiomics, 2022, 8(1): 59–67.

    [28] [28] RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[J]. Chem Mater, 2016, 28(1): 266–273.

    [29] [29] LIU B, LIAO P G, SHI X W, et al. Theoretical insights into interfacial stability and ionic transport of Li2OHBr solid electrolyte for all-solid-state batteries[J]. RSC Adv, 2022, 12(53): 34627–34633.

    [30] [30] DU P H, ZHANG C Z, SUN J, et al. Phase stability, strong four-phonon scattering, and low lattice thermal conductivity in superatom-based superionic conductor Na3OBH4[J]. ACS Appl Mater Interfaces, 2022, 14(42): 47882–47891.

    [31] [31] BLANCHARD D, NALE A, SVEINBJRNSSON D, et al. Nanoconfined LiBH4 as a fast lithium ion conductor[J]. Adv Funct Mater, 2015, 25(2): 184–192.

    [32] [32] OUYANG L Z, CHEN W, LIU J W, et al. Enhancing the regeneration process of consumed NaBH4 for hydrogen storage[J]. Adv Energy Mater, 2017, 7(19): 1700299.

    [33] [33] SUN J W, RUZSINSZKY A, PERDEW J P. Strongly constrained and appropriately normed semilocal density functional[J]. Phys Rev Lett, 2015, 115(3): 036402.

    [34] [34] CHU I H, NGUYEN H, HY S, et al. Insights into the performance limits of the Li7P3S11 superionic conductor: A combined first-principles and experimental study[J]. ACS Appl Mater Interfaces, 2016, 8(12): 7843–7853.

    [35] [35] DENG Z, ZHU Z Y, CHU I H, et al. Data-driven first-principles methods for the study and design of alkali superionic conductors[J]. Chem Mater, 2017, 29(1): 281–288.

    [36] [36] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nat Mater, 2011, 10(9): 682–686.

    [37] [37] HAN F D, ZHU Y Z, HE X F, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Adv Energy Mater, 2016, 6(8): 1501590.

    [38] [38] LACIVITA V, WANG Y, BO S H, et al. Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries[J]. J Mater Chem A, 2019, 7(14): 8144–8155.

    [39] [39] HUSSAIN F, LI P, LI Z Y, et al. Ion conductivity enhancement in anti-spinel Li3OBr with intrinsic vacancies[J]. Adv Theory Simul, 2019, 2(3): 1800138.

    [40] [40] EMLY A, KIOUPAKIS E, VAN DER VEN A. Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors[J]. Chem Mater, 2013, 25(23): 4663–4670.

    [41] [41] ZHU Y Z, HE X F, MO Y F. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations[J]. ACS Appl Mater Interfaces, 2015, 7(42): 23685–23693.

    [42] [42] UNEMOTO A, YASAKU S, NOGAMI G, et al. Development of bulk-type all-solid-state lithium-sulfur battery using LiBH4 electrolyte[J]. 2014, 105(8): 083901.

    [43] [43] MOHTADI R, ORIMO S I. The renaissance of hydrides as energy materials[J]. Nat Rev Mater, 2017, 2(3): 16091.

    [44] [44] GAO Y, SUN S Y, ZHANG X, et al. Amorphous dual-layer coating: Enabling high Li-ion conductivity of non-sintered garnet-type solid electrolyte[J]. Adv Funct Mater, 2021, 31(15): 2009692.

    [45] [45] LIU B, SHI X W, GU L H, et al. Insights into LiMXO4F (M-X = Al-P and Mg-S) as cathode coatings for high-performance lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2022, 14(39): 44859–44868.

    [46] [46] RAMANNA J, YEDUKONDALU N, RAMESH BABU K, et al. Ab initio study of electronic structure, elastic and optical properties of anti-perovskite type alkali metal oxyhalides[J]. Solid State Sci, 2013, 20: 120–126.

    [47] [47] XU Z M, CHEN R H, ZHU H. A Li2CuPS4 superionic conductor: A new sulfide-based solid-state electrolyte[J]. J Mater Chem A, 2019, 7(20): 12645–12653.

    [48] [48] JAIN A, ONG S P, HAUTIER G, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation[J]. 2013, 1(1): 011002.

    [49] [49] MOUHAT F, COUDERT F X. Necessary and sufficient elastic stability conditions in various crystal systems[J]. Phys Rev B, 2014, 90(22): 224104.

    [50] [50] SHEIN I R, IVANOVSKII A L. Elastic properties of mono- and polycrystalline hexagonal AlB2-like diborides of s, p and d metals from first-principles calculations[J]. J Phys: Condens Matter, 2008, 20(41): 415218.

    [51] [51] PUGH S F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. Lond Edinb Dublin Philos Mag J Sci, 1954, 45(367): 823–843.

    [52] [52] YANG Y H, WU Q, CUI Y H, et al. Elastic properties, defect thermodynamics, electrochemical window, phase stability, and Li+ mobility of Li3PS4: Insights from first-principles calculations[J]. ACS Appl Mater Interfaces, 2016, 8(38): 25229–25242.

    [53] [53] AHIAVI E, DAWSON J A, KUDU U, et al. Mechanochemical synthesis and ion transport properties of Na3OX (X = Cl, Br, I and BH4) antiperovskite solid electrolytes[J]. J Power Sources, 2020, 471: 228489.

    [54] [54] HE X F, ZHU Y Z, MO Y F. Origin of fast ion diffusion in super-ionic conductors[J]. Nat Commun, 2017, 8: 15893.

    [55] [55] KWEON K E, VARLEY J B, SHEA P, et al. Structural, chemical, and dynamical frustration: Origins of superionic conductivity in closo- borate solid electrolytes[J]. Chem Mater, 2017, 29(21): 9142–9153.

    [56] [56] ZHANG Z Z, LI H, KAUP K, et al. Targeting superionic conductivity by turning on anion rotation at room temperature in fast ion conductors[J]. Matter, 2020, 2(6): 1667–1684

    Tools

    Get Citation

    Copy Citation Text

    LIU Bo, ZHONG Wei, JIANG Daguo, WU Donglan, FANG Cheng, XIAO Zhipeng, SHI Siqi. First Principles Calculation on Electrochemical Stability and Ion Transport of Antiperovskite Type X3OBH4 (X=Li, Na)[J]. Journal of the Chinese Ceramic Society, 2025, 53(7): 1873

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jan. 2, 2025

    Accepted: Aug. 12, 2025

    Published Online: Aug. 12, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20250003

    Topics