Chinese Journal of Ship Research, Volume. 16, Issue 4, 19(2021)

Recent advances in polynomial chaos method for uncertainty propagation

Fenfen XIONG1, Jiangtao CHEN2, Chengkun REN1, Li ZHANG1, and Zexian LI1
Author Affiliations
  • 1School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
  • 2China Aerodynamics Research and Development Center, Mianyang 621000, China
  • show less
    References(79)

    [10] PREMPRANEERACH P, HOVER F S, TRIANTAFYLLOU M S et al. Uncertainty quantification in simulations of power systems: multi-element polynomial chaos methods[J]. Reliability Engineering & System Safety, 95, 632-646(2010).

    [13] [13] TADIPARTHI V, BHATTAYA R. Robust LQR f uncertain discretetime systems using polynomial chaos[C]2020 American Control Conference (ACC). Denver, CO, USA: IEEE, 2020: 4472–4477. DOI: 10.23919ACC45564.2020.9147831.

    [14] [14] BHATTAYA R. A polynomial chaos framewk f designing linear parameter varying control systems[C]2015 American Control Conference (ACC). Chicago, IL, USA: IEEE, 2015.

    [17] JONE B A, PARRISH N L, WERNER M S et al. Post-maneuver collision probability estimation using polynomial chaos[J]. Advances in the Astronautical Sciences, 150, 261-280(2014).

    [30] [30] ASME. Guide f verification validation in computational solid mechanics: ASME V & V 102006[S]. New Yk: American Society of Mechanical Engineers, 2006.

    [35] ENDERLE B, RAUCH B, GRIMM F et al. Non-intrusive uncertainty quantification in the simulation of turbulent spray combustion using polynomial chaos expansion: a case study[J]. Combustion and Flame, 213, 26-38(2019).

    [36] SCHAEFER J, HOSDER S, WEST T et al. Uncertainty quantification of turbulence model closure coefficients for transonic wall-bounded flows[J]. AIAA Journal, 55, 1-19(2016).

    [37] [37] SCHAEFER J A, CARY A W, DUQUE E P, et al. Application of a CFD uncertainty quantification framewk f industrialscale aerodynamic analysis[C]AIAA SciTech Fum, 711 January 2019. San Diego, Califnia: AIAA, 2019.

    [39] WU X J, ZHANG W W, SONG S F. Robust aerodynamic shape design based on an adaptive stochastic optimization framework[J]. Structural and Multidisciplinary Optimization, 57, 639-651(2017).

    [42] [42] ZANG T A, HEMSCH M J, HILBURGER M W, et al. Needs opptunities f uncertaintybased multidisciplinary design methods f aerospace vehicles[R]. Hampton, VA: NASA, 2002.

    [43] LIE W, YANG S Y, BAI Y N et al. Efficient robust optimization based on polynomial chaos and Tabu search algorithm[J]. International Journal of Applied Electromagnetics and Mechanics, 39, 145-150(2012).

    [45] HUANG Y C, LI H Y, DU X et al. Mars entry trajectory robust optimization based on evidence under epistemic uncertainty[J]. Acta Astronautica, 163, 225-237(2019).

    [46] [46] ONATO G, LOEVEN G J A, GHBANIASL G, et al. Comparison of intrusive nonintrusive polynomial chaos methods f CFD applications in aeronautics[C]European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010. Lisbon, Ptugal: [s.n.], 2010.

    [49] [49] WITTEVEEN J A S, BIJL H. Modeling arbitrary uncertainties using GramScht polynomial chaos[C]44th AIAA Aerospace Sciences Meeting Exhibit. Reno,NV, USA: AIAA, 2006.

    [50] [50] ZHANG G, BAI J J, WANG L X, et al. Uncertainty analysis of arbitrary probability distribution based on Stieltjes Process[C]IEEE 21st Wkshop on Signal Power Integrity (SPI). Baveno, Italy: IEEE, 2017.

    [52] OLADYSHKIN S, NOWAK W. Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion[J]. Reliability Engineering & System Safety, 106, 179-190(2012).

    [54] [54] SOCIE D F. Seminar notes: probabilistic aspects of fatigue[M]. Illinois: University of Illinois Press, 2003.

    [56] RACKWITZ R, FLESSLER B. Structural reliability under combined random load sequences[J]. Computers & Structures, 9, 489-494(1978).

    [59] LIN Q Z, XIONG F F, WANG F G et al. A data-driven polynomial chaos method considering correlated random variables[J]. Structural and Multidisciplinary Optimization, 62, 2131-2147(2020).

    [64] [64] MONTGOMERY D C. Design Analysis of Experiments[M]. New Yk: Wiley, 1976.

    [65] SMOLYAK S A. Quadrature and interpolation formulas for tensor products of certain classes of functions[J]. Doklady Akademii Nauk, 148, 1042-1045(1963).

    [67] [67] ISUKAPALLI S S. Uncertainty analysis of transpttransfmation models[D]. New Brunswick: The State University of New Jersey, 1999.

    [69] [69] HOSDER S, WALTERS R, BALCH M. Efficient sampling f nonintrusive polynomial chaos applications with multiple uncertain input variables[C]48th AIAAASMEEAHS Structures, Structural Dynamics, Materials Conference. Honolulu, Hawaii: AIAA, 2007.

    [70] WEI D L, CUI Z S, CHEN J. Uncertainty quantification using polynomial chaos expansion with points of monomial cubature rules[J]. Computers & Structures, 86, 2102-2108(2008).

    [72] BLATMAN G, SUDRET B. Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach[J]. Comptes Rendus Mécanique, 336, 518-523(2008).

    [77] DIAZ P, DOOSTAN A, HAMPTON J. Sparse polynomial chaos expansions via compressed sensing and D-optimal design[J]. Computer Methods in Applied Mechanics and Engineering, 336, 640-666(2017).

    [80] [80] GAO X F, WANG Y J, SPOTTS N, et al. Fast uncertainty quantification in engine nacelle inlet design using a reduced dimensional polynomial chaos approach[C]AIAASAEASEE Joint Propulsion Conference. Salt Lake City, UT: AIAA, 2016.

    [81] [81] WINOKUR J G. Adaptive sparse grid approaches to polynomial chaos expansions f uncertainty quantification[D]. Durham: Duke University, 2015.

    [83] [83] XIONG F F, XUE B, ZHANG Y, et al. Polynomial chaos expansion based robust design optimization[C]2011 International Conference on Quality, Reliability, Risk, Maintenance, Safety Engineering. Xi''an, China: IEEE, 2011: 868873.

    [85] [85] NG L W T, ELDRED M. Multifidelity Uncertainty quantification using nonintrusive polynomial chaos stochastic collocation[C]53rd AIAAASMEEAHS Structures, Structural Dynamics Materials Conference. Honolulu, USA: AIAA, 2012.

    [87] [87] MATTEO B. Multifidelity surrogate modelling with polynomial chaos expansions[D]. Zurich, Switzerl: ETH ,2016.

    [91] REN C K, XIONG F F, MO B et al. Design sensitivity analysis with polynomial chaos for robust optimization[J]. Structural and Multidisciplinary Optimization, 63, 357-373(2021).

    [92] SUDRET B. Global sensitivity analysis using polynomial chaos expansions[J]. Reliability Engineering & System Safety, 93, 964-979(2008).

    [93] PALAR P S, ZUHAL L R, SHIMOYAMA K et al. Global sensitivity analysis via multi-fidelity polynomial chaos expansion[J]. Reliability Engineering & System Safety, 170, 175-190(2018).

    [94] CHENG K, LU Z Z. Adaptive sparse polynomial chaos expansions for global sensitivity analysis based on support vector regression[J]. Computers & Structures, 194, 86-96(2018).

    [100] KARANKI D R, KUSHWAHA H S, VERMA A K et al. Uncertainty analysis based on probability bounds (P-box) approach in probabilistic safety assessment[J]. Risk Analysis, 29, 662-675(2010).

    [107] ZAMAN K, RANGAVAJHALA S, MCDONALD M P et al. A Probabilistic approach for representation of interval uncertainty[J]. Reliability Engineering & System Safety, 96, 117-130(2011).

    [109] SANKARARAMAN S, MAHADEVAN S. Likelihood-based representation of epistemic uncertainty due to sparse point data and/or interval data[J]. Reliability Engineering & System Safety, 96, 814-824(2011).

    Tools

    Get Citation

    Copy Citation Text

    Fenfen XIONG, Jiangtao CHEN, Chengkun REN, Li ZHANG, Zexian LI. Recent advances in polynomial chaos method for uncertainty propagation[J]. Chinese Journal of Ship Research, 2021, 16(4): 19

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 29, 2020

    Accepted: Jun. 9, 2021

    Published Online: Mar. 28, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.02130

    Topics