Chinese Journal of Ship Research, Volume. 16, Issue 4, 19(2021)
Recent advances in polynomial chaos method for uncertainty propagation
[10] PREMPRANEERACH P, HOVER F S, TRIANTAFYLLOU M S et al. Uncertainty quantification in simulations of power systems: multi-element polynomial chaos methods[J]. Reliability Engineering & System Safety, 95, 632-646(2010).
[13] [13] TADIPARTHI V, BHATTAYA R. Robust LQR f uncertain discretetime systems using polynomial chaos[C]2020 American Control Conference (ACC). Denver, CO, USA: IEEE, 2020: 4472–4477. DOI: 10.23919ACC45564.2020.9147831.
[14] [14] BHATTAYA R. A polynomial chaos framewk f designing linear parameter varying control systems[C]2015 American Control Conference (ACC). Chicago, IL, USA: IEEE, 2015.
[17] JONE B A, PARRISH N L, WERNER M S et al. Post-maneuver collision probability estimation using polynomial chaos[J]. Advances in the Astronautical Sciences, 150, 261-280(2014).
[30] [30] ASME. Guide f verification validation in computational solid mechanics: ASME V & V 102006[S]. New Yk: American Society of Mechanical Engineers, 2006.
[35] ENDERLE B, RAUCH B, GRIMM F et al. Non-intrusive uncertainty quantification in the simulation of turbulent spray combustion using polynomial chaos expansion: a case study[J]. Combustion and Flame, 213, 26-38(2019).
[36] SCHAEFER J, HOSDER S, WEST T et al. Uncertainty quantification of turbulence model closure coefficients for transonic wall-bounded flows[J]. AIAA Journal, 55, 1-19(2016).
[37] [37] SCHAEFER J A, CARY A W, DUQUE E P, et al. Application of a CFD uncertainty quantification framewk f industrialscale aerodynamic analysis[C]AIAA SciTech Fum, 711 January 2019. San Diego, Califnia: AIAA, 2019.
[39] WU X J, ZHANG W W, SONG S F. Robust aerodynamic shape design based on an adaptive stochastic optimization framework[J]. Structural and Multidisciplinary Optimization, 57, 639-651(2017).
[42] [42] ZANG T A, HEMSCH M J, HILBURGER M W, et al. Needs opptunities f uncertaintybased multidisciplinary design methods f aerospace vehicles[R]. Hampton, VA: NASA, 2002.
[43] LIE W, YANG S Y, BAI Y N et al. Efficient robust optimization based on polynomial chaos and Tabu search algorithm[J]. International Journal of Applied Electromagnetics and Mechanics, 39, 145-150(2012).
[45] HUANG Y C, LI H Y, DU X et al. Mars entry trajectory robust optimization based on evidence under epistemic uncertainty[J]. Acta Astronautica, 163, 225-237(2019).
[46] [46] ONATO G, LOEVEN G J A, GHBANIASL G, et al. Comparison of intrusive nonintrusive polynomial chaos methods f CFD applications in aeronautics[C]European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010. Lisbon, Ptugal: [s.n.], 2010.
[49] [49] WITTEVEEN J A S, BIJL H. Modeling arbitrary uncertainties using GramScht polynomial chaos[C]44th AIAA Aerospace Sciences Meeting Exhibit. Reno,NV, USA: AIAA, 2006.
[50] [50] ZHANG G, BAI J J, WANG L X, et al. Uncertainty analysis of arbitrary probability distribution based on Stieltjes Process[C]IEEE 21st Wkshop on Signal Power Integrity (SPI). Baveno, Italy: IEEE, 2017.
[52] OLADYSHKIN S, NOWAK W. Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion[J]. Reliability Engineering & System Safety, 106, 179-190(2012).
[54] [54] SOCIE D F. Seminar notes: probabilistic aspects of fatigue[M]. Illinois: University of Illinois Press, 2003.
[56] RACKWITZ R, FLESSLER B. Structural reliability under combined random load sequences[J]. Computers & Structures, 9, 489-494(1978).
[59] LIN Q Z, XIONG F F, WANG F G et al. A data-driven polynomial chaos method considering correlated random variables[J]. Structural and Multidisciplinary Optimization, 62, 2131-2147(2020).
[64] [64] MONTGOMERY D C. Design Analysis of Experiments[M]. New Yk: Wiley, 1976.
[65] SMOLYAK S A. Quadrature and interpolation formulas for tensor products of certain classes of functions[J]. Doklady Akademii Nauk, 148, 1042-1045(1963).
[67] [67] ISUKAPALLI S S. Uncertainty analysis of transpttransfmation models[D]. New Brunswick: The State University of New Jersey, 1999.
[69] [69] HOSDER S, WALTERS R, BALCH M. Efficient sampling f nonintrusive polynomial chaos applications with multiple uncertain input variables[C]48th AIAAASMEEAHS Structures, Structural Dynamics, Materials Conference. Honolulu, Hawaii: AIAA, 2007.
[70] WEI D L, CUI Z S, CHEN J. Uncertainty quantification using polynomial chaos expansion with points of monomial cubature rules[J]. Computers & Structures, 86, 2102-2108(2008).
[72] BLATMAN G, SUDRET B. Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach[J]. Comptes Rendus Mécanique, 336, 518-523(2008).
[77] DIAZ P, DOOSTAN A, HAMPTON J. Sparse polynomial chaos expansions via compressed sensing and D-optimal design[J]. Computer Methods in Applied Mechanics and Engineering, 336, 640-666(2017).
[80] [80] GAO X F, WANG Y J, SPOTTS N, et al. Fast uncertainty quantification in engine nacelle inlet design using a reduced dimensional polynomial chaos approach[C]AIAASAEASEE Joint Propulsion Conference. Salt Lake City, UT: AIAA, 2016.
[81] [81] WINOKUR J G. Adaptive sparse grid approaches to polynomial chaos expansions f uncertainty quantification[D]. Durham: Duke University, 2015.
[83] [83] XIONG F F, XUE B, ZHANG Y, et al. Polynomial chaos expansion based robust design optimization[C]2011 International Conference on Quality, Reliability, Risk, Maintenance, Safety Engineering. Xi''an, China: IEEE, 2011: 868873.
[85] [85] NG L W T, ELDRED M. Multifidelity Uncertainty quantification using nonintrusive polynomial chaos stochastic collocation[C]53rd AIAAASMEEAHS Structures, Structural Dynamics Materials Conference. Honolulu, USA: AIAA, 2012.
[87] [87] MATTEO B. Multifidelity surrogate modelling with polynomial chaos expansions[D]. Zurich, Switzerl: ETH ,2016.
[91] REN C K, XIONG F F, MO B et al. Design sensitivity analysis with polynomial chaos for robust optimization[J]. Structural and Multidisciplinary Optimization, 63, 357-373(2021).
[92] SUDRET B. Global sensitivity analysis using polynomial chaos expansions[J]. Reliability Engineering & System Safety, 93, 964-979(2008).
[93] PALAR P S, ZUHAL L R, SHIMOYAMA K et al. Global sensitivity analysis via multi-fidelity polynomial chaos expansion[J]. Reliability Engineering & System Safety, 170, 175-190(2018).
[94] CHENG K, LU Z Z. Adaptive sparse polynomial chaos expansions for global sensitivity analysis based on support vector regression[J]. Computers & Structures, 194, 86-96(2018).
[100] KARANKI D R, KUSHWAHA H S, VERMA A K et al. Uncertainty analysis based on probability bounds (P-box) approach in probabilistic safety assessment[J]. Risk Analysis, 29, 662-675(2010).
[107] ZAMAN K, RANGAVAJHALA S, MCDONALD M P et al. A Probabilistic approach for representation of interval uncertainty[J]. Reliability Engineering & System Safety, 96, 117-130(2011).
[109] SANKARARAMAN S, MAHADEVAN S. Likelihood-based representation of epistemic uncertainty due to sparse point data and/or interval data[J]. Reliability Engineering & System Safety, 96, 814-824(2011).
Get Citation
Copy Citation Text
Fenfen XIONG, Jiangtao CHEN, Chengkun REN, Li ZHANG, Zexian LI. Recent advances in polynomial chaos method for uncertainty propagation[J]. Chinese Journal of Ship Research, 2021, 16(4): 19
Category:
Received: Sep. 29, 2020
Accepted: Jun. 9, 2021
Published Online: Mar. 28, 2025
The Author Email: