Journal of Quantum Optics, Volume. 31, Issue 1, 10702(2025)

Propagation Characteristics of One-dimensional Symmetric Pearcey-Gaussian Beams in Photorefractive Media

QIAO Zhi, YANG Haixiong, and SONG Lijun*
Author Affiliations
  • College of Physics and Electronic Engineering, Shanxi University, Taiyuan, 030006, China
  • show less
    References(42)

    [1] [1] SIVILOGLOU G A, CHRISTODOULIDES D N. Accelerating finite energy Airy beams[J]. Optic Letters, 2007, 32(8):979-981. DOI: 10.1364/OL.32.000979.

    [2] [2] ZHOU G, CHEN R, RU G. Propagation of an Airy beam in a strongly nonlocal nonlinear media[J]. Laser Physics Letters, 2014, 11(10):105001. DOI: 10.1088/1612.-2011/11/10/105001.

    [3] [3] ZHANG L, ZHANG X, WU H, et al. Anomalous interaction of Airy beams in the fractional nonlinear Schrdinger equation[J]. Optics Express, 2019, 27(20):27936-27945. DOI: 10.1364/OE.27.027936.

    [4] [4] ZANG F, WANG Y, LI L. Dynamics of Gaussian beam modeled by fractional Schrdinger equation witavariable coefficient[J]. Optics Express, 2018, 26(18):23740-23750. DOI: 10.1364/OE.26.023740.

    [5] [5] JIAO R, ZHANG W, DOU L, et al. Nonlinear propagation dynamics of Gaussian beams in fractional Schrdinger equation[J]. Physica Scripta, 2021, 96(6):065212. DOI: 10.1088/1402-4896/abf57f.

    [6] [6] MAZILU M, STEVENSON D J, GUNN-MOORE F, et al. Light beats the spread: "non-diffracting" beams[J]. Laser & Photonics Reviews, 2010, 4(4):529-547. DOI: 10.1002/Ipor.200910019.

    [7] [7] ZHANG Y, WU Z, RU J, et al. Evolution of the Bessel-Gaussian beam modeled by the fractional Schrdinger equation[J]. Journal of The Optical Society of America B-Optical Physics, 2020, 37(11):3414-3421. DOI: 10.1364/JOSAB.399840.

    [8] [8] GRIER D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950):810-816. DOI: 10.1038/n-ature01935.

    [9] [9] ALEKSANYAN A, KRAVETS N, BRASSELET E. Multiple-star system adaptive vortex coronagraphy using a liquid crystal light valve[J]. Physical Review Letters, 2017, 118(20):203902. DOI: 10.1103/PhysRevLett.118.203902.

    [10] [10] YANG Y, ZHAO Q, LIU L, et al. Manipulation of orbital-angular-momentum spectrum using pinhole plates[J]. Physical Review Applied, 2019, 12(6):064007. DOI: 10.1103/PhysRevApplied.12.064007.

    [11] [11] POSTON T, STEWART I. Catastrophe theory and its applications[M]. Courier Corporation, 1996. DOI: 10.1115/1.3424591.

    [12] [12] BERRY M V, UPSTILL C. IV catastrophe optics: morphologies of caustics and their diffraction patterns[J]. Progress in Optics, 1980, 18:257-346. DOI: 10.1016/S0079-6638(08)70215-4.

    [13] [13] RING J D, LINDBERG J, MOURKA A, et al. Auto-focusing and self-healing of Pearcey beams[J]. Optics Express, 2012, 20(17):18955-18966. DOI: 10.1364/OE.20.018955.

    [14] [14] DENG D, CHEN C, ZHAO X, et al. Virtual source of a Pearcey beam[J]. Optics Letters, 2014, 39(9):2703-2706. DOI: 10.1364/OL.39.002703.

    [15] [15] KOVALEV A A, KOTLYAR V V, ZASKANOV S G, et al. Half Pearcey laser beams[J]. Journal of Optics, 2015, 17(3):035604. DOI: 10.1088/2040-8978/17/3/035604.

    [16] [16] CHEN X, DENG D, ZHUANG J, et al. Focusing properties of circle Pearcey beams[J]. Optics Letters, 2018, 43(15):3626-3629. DOI: 10.1364/OL.43.003626.

    [17] [17] ZANG F, WANG Y, LI L. Dual self-accelerating properties of one-dimensional finite energy Pearcey be-am[J]. Results in Physics, 2019, 15:102656. DOI: 10.1016/j.rinp.2019.102656.

    [18] [18] LIN Z, XU C, HUANG H, et al. Accelerating trajectory manipulation of symmetric Pearcey Gaussian beam in a uniformly moving parabolic potential[J]. Optics Express, 2021, 29(11):16270-16283. DOI: 10.1364/OE.424489.

    [19] [19] REN S, GAO R, GUO T, et al. Periodic evolution of the Pearcey Gaussian beam under fractional effect[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2022, 55(20):205401. DOI: 10.1088/1361-6455/ac8387.

    [20] [20] GAO R, GUO T, REN S, et al. Periodic evolution of the Pearcey-Gaussian beam in the fractional Schrdinger equation under Gaussian potential[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2022, 55(9):095401. DOI: 10.1088/1361-6455/ac6554.

    [21] [21] LI Y, PENG Y, HONG W. Propagation of the Pearcey pulse with a linear chirp[J]. Results in Physics, 2020, 16:102932. DOI: 10.1016/j.rinp.2020.102932.

    [22] [22] ZANG F, LIU L, DENG F, et al. Dual-focusing behavior of a one-dimensional quadratically chirped Pearcey-Gaussian beam[J]. Optics Express, 2021, 29(16):26048-26057. DOI: 10.1364/OE.435518.

    [23] [23] ZHANG X, ZHANG J, CHEN C, et al. Controllable focusing behavior of chirped Pearcey-Gaussian pulsesunder time-dependent potentials[J]. Optics Express, 2022, 30(19):34835-34847. DOI: 10.1364/OE.471329.

    [24] [24] ZHANG S, ZANG F, DONG L, et al. The evolution and interaction of the asymmetric Pearcey-Gaussian beam in nonlinear Kerr medium[J]. Applied Physics B-Lasers And Optics, 2022, 128(9):1-9. DOI: 10.1007/s00340-022-07899-4.

    [25] [25] LI D, DENG F, HONG W Y, Direct generation of a narrowband EUV vortex with ring Pearcey-Gaussian-vortex-beam-driven harmonics[J]. Optics Letters, 2024, 49(19):5503-5506. DOI: 10.1364/OL.534481.

    [26] [26] HE S L, PENG X, HE Y J, et al. Propagation dynamics of the second-order chirped circular Pearcey Gaussian vortex beam in the fractional nonlinear Schrdinger equation[J]. Chao, Solitons and Fractals, 2024, 189(2):115734. DOI: 10.1016/j.chaos.2024.115734.

    [27] [27] ZHUANG C H, WU B Y, LIU Z H, et al. Abruptly autofocusing multiple optical bottle beams[J]. Optics and Laser Technology, 2025, 184(6):112443. DOI: 10.1016/j.optlastec.2025.112443.

    [28] [28] LIAN S D, QUAN Q Y, LIU Z H, et al. Dynamics of stable solitons of circular Pearcey Gaussian beams in a photorefractive strontium barium niobate crystal[J]. Optics Letters, 2025, 50(3):856-859. DOI: 10.1364/OL.547236.

    [29] [29] KONAR S, JANA S. Linear and nonlinear propagation of sinh-Gaussian pulses in dispersive media possessing Kerr nonlinearity[J]. Optics Communications, 2004, 236(1-3):7-20. DOI: 10.1016.j.optcom.2004.03.012.

    [30] [30] SHENG Y B, DENG F G, ZHOU H Y. Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity[J]. Physical Review A, 2008, 77(4):042308. DOI: 10.1103/PhysRevA.77.042308.

    [31] [31] PANKOV A. Gap solitons in periodic discrete nonlinear Schrdinger equations with saturable nonlinearities[J]. Journal of Mathematical Analysis and Applications, 2010, 371(1):254-265. DOI: 10.1016/j.jmaa.2010.05.041.

    [32] [32] DAS S, DEY K K, SEKH G A. Optical solitons in saturable cubic-quintic nonlinear media with nonlinear dispersion[J]. Optik, 2021, 247:167865. DOI: 10.1016/j.ijleo.2021.167865.

    [33] [33] WU Z, ZHANG Y, ULLAH Z, et al. Solitons of four-wave mixing in competing cubic-quintic nonlinearity[J]. Optics Express, 2015, 23(7):8430-8440. DOI: 10.1364/OE.23.008430.

    [34] [34] LIU B, ZHAN K, YANG Z. Propagation dynamics of finite-energy Airy beams in competing nonlocal nonlinear media[J]. Journal of The Optical Society of America B-Optical Physics, 2018, 35(11):2794-2798. DOI: 10.1364/JOSAB.35.002794.

    [35] [35] LI J G, QI W, MING S, et al. Solitons in optical lattices with nonlocal nonlinearity[J]. Chinese Physics B, 2009, 18(2):616. DOI: 10.1088/1674-1056/18/2/038.

    [36] [36] STRINATI M C, CONTI C. Bose-Einstein condensation of photons with nonlocal nonlinearity in a dyedoped graded-index microcavity[J]. Physical Review A, 2014, 90(4):043853. DOI: 10.1103/PhysRevA.90.043853.

    [37] [37] BLMKER D, WANG W. Qualitative properties of local random invariant manifolds for SPDEs with quadratic nonlinearity[J]. Journal of Dynamics and Differential Equations, 2010, 22(4):677-695. DOI: 10.1007/s10884-009-9145-6.

    [38] [38] ASLAN E C, MUSTAFA I. Soliton solutions of NLSE with quadratic-cubic nonlinearity and stability analysis[J]. Waves in Random and Complex Media, 2017, 27(4):594-601. DOI: 10.1080/17455030.2017.1286060.

    [39] [39] ZHANG T H, REN X K, WANG B H, et al. Surface waves with photorefractive nonlinearity[J]. Physical Review A, 2007, 76(1):013827. DOI: 10.1103/PhysRevA.76.013827.

    [40] [40] HOU C, PEI Y, ZHOU Z, et al. Spatial solitons in two-photon photorefractive media[J]. Physical Review A, 2005, 71(5):053817. DOI: 10.1103/PhysRevA.71.053817.

    [41] [41] ARDILA A H. Existence and stability of standing waves for nonlinear fractional Schrdinger equation with logarithmic nonlinearity[J]. Nonlinear Analysis, 2017, 155:52-64. DOI: 10.1016/j.na.2017.01.006.

    [42] [42] ZHANG L, HOU W. Standing waves of nonlinear fractional p-Laplacian Schrdinger equation involvinglogarithmic nonlinearity[J]. Applied Mathematics Letters, 2020, 102:106149. DOI: 10.1016/j.aml.2019.106149.

    Tools

    Get Citation

    Copy Citation Text

    QIAO Zhi, YANG Haixiong, SONG Lijun. Propagation Characteristics of One-dimensional Symmetric Pearcey-Gaussian Beams in Photorefractive Media[J]. Journal of Quantum Optics, 2025, 31(1): 10702

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 20, 2023

    Accepted: Apr. 17, 2025

    Published Online: Apr. 17, 2025

    The Author Email: SONG Lijun (songlij@sxu.edu.cn)

    DOI:10.3788/jqo20253101.0702

    Topics