Acta Optica Sinica, Volume. 43, Issue 16, 1623012(2023)

Optical Torques: Fundamentals and Their Applications

Ye Tao1, Wei Zhong1, Xinyi Wu1, Tao He1,2,3,4, Chengxing Lai1, Zhanshan Wang1,2,3,4, Yuzhi Shi1,2,3,4、*, and Xinbin Cheng1,2,3,4、**
Author Affiliations
  • 1Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 2MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
  • 3Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
  • 4Shanghai Professional Technical Service Platform for Full-Spectrum and High-Performance Optical Thin Film Devices and Applications, Shanghai 200092, China
  • show less
    References(145)

    [1] Ashkin A, Dziedzic J M, Bjorkholm J E et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 11, 288-290(1986).

    [2] Ashkin A. Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters, 24, 156-159(1970).

    [3] Ashkin A, Dziedzic J M, Yamane T. Optical trapping and manipulation of single cells using infrared laser beams[J]. Nature, 330, 769-771(1987).

    [4] Ashkin A, Dziedzic J M. Optical trapping and manipulation of viruses and bacteria[J]. Science, 235, 1517-1520(1987).

    [5] Ashkin A. Optical trapping and manipulation of neutral particles using lasers[J]. Proceedings of the National Academy of Sciences, 94, 4853-4860(1997).

    [6] Ashkin A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime[J]. Biophysical Journal, 61, 569-582(1992).

    [7] Ashkin A. History of optical trapping and manipulation of small-neutral particle, atoms, and molecules[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 841-856(2000).

    [8] Ashkin A. Trapping of atoms by resonance radiation pressure[J]. Physical Review Letters, 40, 729-732(1978).

    [9] Ashkin A. Applications of laser radiation pressure[J]. Science, 210, 1081-1088(1980).

    [10] Ashkin A, Dziedzic J M. Internal cell manipulation using infrared laser traps[J]. Proceedings of the National Academy of Science of the United States of America, 86, 7914-7918(1989).

    [11] Juan M L, Righini M, Quidant R. Plasmon nano-optical tweezers[J]. Nature Photonics, 5, 349-356(2011).

    [12] Neuman K C, Nagy A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy[J]. Nature Methods, 5, 491-505(2008).

    [13] Grigorenko A N, Roberts N W, Dickinson M R et al. Nanometric optical tweezers based on nanostructured substrates[J]. Nature Photonics, 2, 365-370(2008).

    [14] Young A W, Eckner W J, Schine N et al. Tweezer-programmable 2D quantum walks in a Hubbard-regime lattice[J]. Science, 377, 885-889(2022).

    [15] Pool R. Trapping with optical tweezers[J]. Science, 241, 1042(1988).

    [16] Chen P, Dang Y T, Zhong H et al. Single-fiber optical tweezer based on coexistence of LP01 and LP11 modes for multiplexed capture and manipulation of biological cells[J]. Acta Optica Sinica, 43, 0406004(2023).

    [17] Ðorđević T, Samutpraphoot P, Ocola P L et al. Entanglement transport and a nanophotonic interface for atoms in optical tweezers[J]. Science, 373, 1511-1514(2021).

    [18] Zhuang X W. Unraveling DNA condensation with optical tweezers[J]. Science, 305, 188-190(2004).

    [19] Norcia M A, Young A W, Eckner W J et al. Seconds-scale coherence on an optical clock transition in a tweezer array[J]. Science, 366, 93-97(2019).

    [20] Anderegg L, Cheuk L W, Bao Y et al. An optical tweezer array of ultracold molecules[J]. Science, 365, 1156-1158(2019).

    [21] Kaufman A M, Lester B J, Reynolds C M et al. Two-particle quantum interference in tunnel-coupled optical tweezers[J]. Science, 345, 306-309(2014).

    [22] Zhou J X, Qian H L, Chen C F et al. Optical edge detection based on high-efficiency dielectric metasurface[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 11137-11140(2019).

    [23] Schleier-Smith M. Solving a puzzle with atomic qubits[J]. Science, 376, 1155-1156(2022).

    [24] Kuo S C, Sheetz M P. Force of single kinesin molecules measured with optical tweezers[J]. Science, 260, 232-234(1993).

    [25] Ge J H, Bian X, Ma L et al. Stepwise membrane binding of extended synaptotagmins revealed by optical tweezers[J]. Nature Chemical Biology, 18, 313-320(2022).

    [26] Peddireddy K R, Clairmont R, Neill P et al. Optical-Tweezers-integrating-Differential-Dynamic-Microscopy maps the spatiotemporal propagation of nonlinear strains in polymer blends and composites[J]. Nature Communications, 13, 5180(2022).

    [27] Vogt N. High-resolution optical tweezers[J]. Nature Methods, 18, 333(2021).

    [28] Dai X, Fu W H, Chi H Y et al. Optical tweezers-controlled hotspot for sensitive and reproducible surface-enhanced Raman spectroscopy characterization of native protein structures[J]. Nature Communications, 12, 1292(2021).

    [29] Madsen L S, Waleed M, Casacio C A et al. Ultrafast viscosity measurement with ballistic optical tweezers[J]. Nature Photonics, 15, 386-392(2021).

    [30] Koch S, Yeh R. Versatile control system for automated single-molecule optical tweezers investigations[J]. Nature Precedings, 4, 2374(2010).

    [32] Diekmann R, Wolfson D L, Spahn C et al. Nanoscopy of bacterial cells immobilized by holographic optical tweezers[J]. Nature Communications, 7, 13711(2016).

    [33] Xu L H, Zhang Y L, Liu Z Q et al. Driving method of four-electrode liquid crystal adjustable optical wedge[J]. Acta Optica Sinica, 42, 1323001(2022).

    [34] Li H, Chen X X, Zhang Y et al. Chloroplast optical microlens with variable focus[J]. Acta Optica Sinica, 42, 0411003(2022).

    [35] He L, Li H A, Li M. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices[J]. Science Advances, 2, e1600485(2016).

    [36] Friese M E J, Enger J, Rubinsztein-Dunlop H et al. Optical angular-momentum transfer to trapped absorbing particles[J]. Physical Review A, 54, 1593-1596(1996).

    [37] Lee Y E, Fung K H, Jin D F et al. Optical torque from enhanced scattering by multipolar plasmonic resonance[J]. Nanophotonics, 3, 343-350(2014).

    [38] Friese M E J, Nieminen T A, Heckenberg N R et al. Optical torque controlled by elliptical polarization[J]. Optics Letters, 23, 1-3(1998).

    [39] Tong L M, Miljković V D, Käll M. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces[J]. Nano Letters, 10, 268-273(2010).

    [40] Liaw J W, Lo W J, Kuo M K. Wavelength-dependent longitudinal polarizability of gold nanorod on optical torques[J]. Optics Express, 22, 10858-10867(2014).

    [41] Oroszi L, Galajda P, Kirei H et al. Direct measurement of torque in an optical trap and its application to double-strand DNA[J]. Physical Review Letters, 97, 058301(2006).

    [42] Ahn J, Xu Z J, Bang J et al. Ultrasensitive torque detection with an optically levitated nanorotor[J]. Nature Nanotechnology, 15, 89-93(2020).

    [43] Geng Y, Tan J B, Cao Y Y et al. Giant and tunable optical torque for micro-motors by increased force arm and resonantly enhanced force[J]. Scientific Reports, 8, 2819(2018).

    [44] Liu M, Zentgraf T, Liu Y M et al. Light-driven nanoscale plasmonic motors[J]. Nature Nanotechnology, 5, 570-573(2010).

    [45] Lee Y E, Miller O D, Homer Reid M T et al. Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque[J]. Optics Express, 25, 6757-6766(2017).

    [46] Brzobohatý O, Karásek V, Šiler M et al. Experimental demonstration of optical transport, sorting and self-arrangement using a "tractor beam"[J]. Nature Photonics, 7, 123-127(2013).

    [47] Shi Y Z, Zhou L M, Liu A Q et al. Superhybrid mode-enhanced optical torques on Mie-resonant particles[J]. Nano Letters, 22, 1769-1777(2022).

    [48] Bliokh K Y, Rodríguez-Fortuño F J, Nori F et al. Spin-orbit interactions of light[J]. Nature Photonics, 9, 796-808(2015).

    [49] Bliokh K Y, Bekshaev A Y, Nori F. Extraordinary momentum and spin in evanescent waves[J]. Nature Communications, 5, 3300(2014).

    [50] Shi Y Z, Song Q H, Toftul I et al. Optical manipulation with metamaterial structures[J]. Applied Physics Reviews, 9, 031303(2022).

    [51] Asavei T, Parkin S, Persson M et al. Engineering optically driven micromachines[J]. Proceedings of SPIE, 7038, 703816(2008).

    [52] Shi Y Z, Zhu T T, Liu J Q et al. Stable optical lateral forces from inhomogeneities of the spin angular momentum[J]. Science Advances, 8, eabn2291(2022).

    [53] Bishop A I, Nieminen T A, Heckenberg N R et al. Optical microrheology using rotating laser-trapped particles[J]. Physical Review Letters, 92, 198104(2004).

    [54] Allen L, Beijersbergen M W, Spreeuw R J et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).

    [55] He H, Friese M E, Heckenberg N R et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity[J]. Physical Review Letters, 75, 826-829(1995).

    [56] Simpson N B, Allen L, Padgett M J. Optical tweezers and optical spanners with Laguerre-Gaussian modes[J]. Journal of Modern Optics, 43, 2485-2491(1996).

    [57] Gahagan K T, Swartzlander G A. Optical vortex trapping of particles[J]. Optics Letters, 21, 827-829(1996).

    [58] Paterson L, MacDonald M P, Arlt J et al. Controlled rotation of optically trapped microscopic particles[J]. Science, 292, 912-914(2001).

    [59] Yan Z J, Scherer N F. Optical vortex induced rotation of silver nanowires[J]. The Journal of Physical Chemistry Letters, 4, 2937-2942(2013).

    [60] Shen Z, Hu Z J, Yuan G H et al. Visualizing orbital angular momentum of plasmonic vortices[J]. Optics Letters, 37, 4627-4629(2012).

    [61] Zhang Y Q, Shi W, Shen Z et al. A plasmonic spanner for metal particle manipulation[J]. Scientific Reports, 5, 15446(2015).

    [62] Zhao Y Q, Edgar J S, Jeffries G D M et al. Spin-to-orbital angular momentum conversion in a strongly focused optical beam[J]. Physical Review Letters, 99, 073901(2007).

    [63] Chen J, Ng J, Ding K et al. Negative optical torque[J]. Scientific Reports, 4, 6386(2014).

    [64] Qi T L, Han F, Liu W B et al. Stable negative optical torque in optically bound nanoparticle dimers[J]. Nano Letters, 22, 8482-8486(2022).

    [65] Liaw J W, Huang M C, Chao H Y et al. Spin and orbital rotation of plasmonic dimer driven by circularly polarized light[J]. Nanoscale Research Letters, 13, 322(2018).

    [66] Parker J, Peterson C W, Yifat Y et al. Optical matter machines: angular momentum conversion by collective modes in optically bound nanoparticle arrays[J]. Optica, 7, 1341-1348(2020).

    [67] Nan F, Li X A, Zhang S L et al. Creating stable trapping force and switchable optical torque with tunable phase of light[J]. Science Advances, 8, eadd6664(2022).

    [68] Han F, Yan Z J. Phase transition and self-stabilization of light-mediated metal nanoparticle assemblies[J]. ACS Nano, 14, 6616-6625(2020).

    [69] Canaguier-Durand A, Hutchison J A, Genet C et al. Mechanical separation of chiral dipoles by chiral light[J]. New Journal of Physics, 15, 123037(2013).

    [70] Cameron R P, Barnett S M, Yao A M. Discriminatory optical force for chiral molecules[J]. New Journal of Physics, 16, 013020(2014).

    [71] Cameron R P, Yao A M, Barnett S M. Diffraction gratings for chiral molecules and their applications[J]. The Journal of Physical Chemistry A, 118, 3472-3478(2014).

    [72] Tkachenko G, Brasselet E. Optofluidic sorting of material chirality by chiral light[J]. Nature Communications, 5, 3577(2014).

    [73] Nieto-Vesperinas M. Optical theorem for the conservation of electromagnetic helicity: significance for molecular energy transfer and enantiomeric discrimination by circular dichroism[J]. Physical Review A, 92, 023813(2015).

    [74] Wang S B, Chan C T. Lateral optical force on chiral particles near a surface[J]. Nature Communications, 5, 3307(2014).

    [75] Ding K, Ng J, Zhou L et al. Realization of optical pulling forces using chirality[J]. Physical Review A, 89, 063825(2014).

    [76] Canaguier-Durand A, Genet C. Chiral route to pulling optical forces and left-handed optical torques[J]. Physical Review A, 92, 043823(2015).

    [77] Chen H J, Lu W L, Yu X N et al. Optical torque on small chiral particles in generic optical fields[J]. Optics Express, 25, 32867-32878(2017).

    [78] Zhang Q, Li J Q, Liu X G. Optical lateral forces and torques induced by chiral surface-plasmon-polaritons and their potential applications in recognition and separation of chiral enantiomers[J]. Physical Chemistry Chemical Physics, 21, 1308-1314(2019).

    [79] La Porta A, Wang M D. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles[J]. Physical Review Letters, 92, 190801(2004).

    [80] Pedaci F, Huang Z X, van Oene M et al. Calibration of the optical torque wrench[J]. Optics Express, 20, 3787-3802(2012).

    [81] Pedaci F, Huang Z X, van Oene M et al. Excitable particles in an optical torque wrench[J]. Nature Physics, 7, 259-264(2011).

    [82] Inman J, Forth S, Wang M D. Passive torque wrench and angular position detection using a single-beam optical trap[J]. Optics Letters, 35, 2949-2951(2010).

    [83] Friese M E J, Nieminen T A, Heckenberg N R et al. Optical alignment and spinning of laser-trapped microscopic particles[J]. Nature, 394, 348-350(1998).

    [84] Mitri F G. Negative optical spin torque wrench of a non-diffracting non-paraxial fractional Bessel vortex beam[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 182, 172-179(2016).

    [85] Silva G T, Lobo T P, Mitri F G. Radiation torque produced by an arbitrary acoustic wave[J]. EPL (Europhysics Letters), 97, 54003(2012).

    [86] Shao L, Käll M. Light-driven rotation of plasmonic nanomotors[J]. Advanced Functional Materials, 28, 1706272(2018).

    [87] Chen H J, Feng L, Ma J N et al. Left-handed optical torque on dipolar plasmonic nanoparticles induced by Fano-like resonance[J]. Physical Review B, 106, 054301(2022).

    [88] Tanaka Y Y, Albella P, Rahmani M et al. Plasmonic linear nanomotor using lateral optical forces[J]. Science Advances, 6, eabc3726(2020).

    [89] Rahimzadegan A, Fruhnert M, Alaee R et al. Optical force and torque on dipolar dual chiral particle[J]. Physical Review B, 94, 125123(2016).

    [90] Wu X F, Ehehalt R, Razinskas G et al. Light-driven microdrones[J]. Nature Nanotechnology, 17, 477-484(2022).

    [91] Feng L, Ma J N, Lu W L et al. Anomalously enhanced transverse optical torque on a dipolar plasmonic nanoparticle in two-wave interference[J]. Optics Letters, 47, 6241-6244(2022).

    [92] Wu T, Nieminen T A, Mohanty S et al. A photon-driven micromotor can direct nerve fibre growth[J]. Nature Photonics, 6, 62-67(2012).

    [93] Arita Y, Mazilu M, Dholakia K. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum[J]. Nature Communications, 4, 2374(2013).

    [94] Ginzburg P, Krasavin A V, Poddubny A N et al. Self-induced torque in hyperbolic metamaterials[J]. Physical Review Letters, 111, 036804(2013).

    [95] Iihama S, Ishibashi K, Mizukami S. Interface-induced field-like optical spin torque in a ferromagnet/heavy metal heterostructure[J]. Nanophotonics, 10, 1169-1176(2021).

    [96] Shao L, Yang Z J, Andrén D et al. Gold nanorod rotary motors driven by resonant light scattering[J]. ACS Nano, 9, 12542-12551(2015).

    [97] Wu A A, Tanaka Y Y, Shimura T. Plasmon-hybridization-induced optical torque between twisted metal nanorods[J]. Optics Express, 28, 2398-2410(2020).

    [98] Fukuhara R, Tanaka Y Y, Shimura T. Transverse optical torque induced by localized surface plasmons[J]. Physical Review A, 100, 023827(2019).

    [99] Liesener J, Reicherter M, Haist T et al. Multi-functional optical tweezers using computer-generated holograms[J]. Optics Communications, 185, 77-82(2000).

    [100] Liaw J W, Lo W J, Lin W C et al. Theoretical study of optical torques for aligning Ag nanorods and nanowires[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 162, 133-142(2015).

    [101] Chen J, Wang N, Cui L Y et al. Optical twist induced by plasmonic resonance[J]. Scientific Reports, 6, 27927(2016).

    [102] Pergamenshchik V M, Multian V V, Gayvoronsky V Y et al. Interaction of supramolecular aggregates and the enhanced optical torque on the director in a dye doped nematic liquid crystal[J]. Soft Matter, 15, 8886-8895(2019).

    [103] Kosa T, Palffy-Muhoray P, Zhang H et al. Large optical torque enhancement by oligothiophene dye in a nematic liquid crystal host[J]. Molecular Crystals and Liquid Crystals, 421, 107-115(2004).

    [104] Xu Z J, Li T C. Detecting Casimir torque with an optically levitated nanorod[J]. Physical Review A, 96, 033843(2017).

    [105] Hoang T M, Ma Y E, Ahn J et al. Torsional optomechanics of a levitated nonspherical nanoparticle[J]. Physical Review Letters, 117, 123604(2016).

    [106] Kuhn S, Kosloff A, Stickler B A et al. Full rotational control of levitated silicon nanorods[J]. Optica, 4, 356-360(2017).

    [107] Nava G, Ciciulla F, Iadlovska O S et al. Pitch tuning induced by optical torque in heliconical cholesteric liquid crystals[J]. Physical Review Research, 1, 033215(2019).

    [108] Van Der Laan F, Reimann R, Doderer M et al. GHz rotation of an optically trapped nanoparticle in vacuum[J]. Physical Review Letters, 126, 153602(2021).

    [109] van der Laan F, Reimann R, Militaru A et al. Optically levitated rotor at its thermal limit of frequency stability[J]. Physical Review A, 102, 013505(2020).

    [110] Ahn J, Xu Z J, Bang J et al. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor[J]. Physical Review Letters, 121, 033603(2018).

    [111] Gutiérrez-Medina B, Peña M, Ana I et al. Mechanical testing of particle streaming and intact extracellular mucilage nanofibers reveal a role of elastic force in diatom motility[J]. Physical Biology, 19, 056002(2022).

    [112] Gutiérrez-Medina B, Andreasson J O L, Greenleaf W J et al. An optical apparatus for rotation and trapping[J]. Methods in Enzymology, 475, 377-404(2010).

    [113] Forth S, Deufel C, Sheinin M Y et al. Abrupt buckling transition observed during the plectoneme formation of individual DNA molecules[J]. Physical Review Letters, 100, 148301(2008).

    [114] Deufel C, Wang M D. Detection of forces and displacements along the axial direction in an optical trap[J]. Biophysical Journal, 90, 657-667(2006).

    [115] Vanderlinden W, Skoruppa E, Kolbeck P J et al. DNA fluctuations reveal the size and dynamics of topological domains[J]. PNAS Nexus, 1, pgac268(2022).

    [116] Lucchetti L, Fraccia T P, Nava G et al. Elasticity and viscosity of DNA liquid crystals[J]. ACS Macro Letters, 9, 1034-1039(2020).

    [117] Skoruppa E, Carlon E. Equilibrium fluctuations of DNA plectonemes[J]. Physical Review E, 106, 024412(2022).

    [118] Deufel C, Forth S, Simmons C R et al. Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection[J]. Nature Methods, 4, 223-225(2007).

    [119] Gao X A, Hong Y F, Ye F et al. Torsional stiffness of extended and plectonemic DNA[J]. Physical Review Letters, 127, 028101(2021).

    [120] Sheinin M Y, Forth S, Marko J F et al. Underwound DNA under tension: structure, elasticity, and sequence-dependent behaviors[J]. Physical Review Letters, 107, 108102(2011).

    [121] Harada Y, Ohara O, Takatsuki A et al. Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase[J]. Nature, 409, 113-115(2001).

    [122] Lokesh M, Vaippully R, Bhallamudi V P et al. Realization of pitch-rotational torque wrench in two-beam optical tweezers[J]. Journal of Physics Communications, 5, 115016(2021).

    [123] Williams I, Oğuz E C, Speck T et al. Transmission of torque at the nanoscale[J]. Nature Physics, 12, 98-103(2016).

    [124] Knöner G, Parkin S, Heckenberg N R et al. Characterization of optically driven fluid stress fields with optical tweezers[J]. Physical Review E, 72, 031507(2005).

    [125] Yao A, Tassieri M, Padgett M et al. Microrheology with optical tweezers[J]. Lab on a Chip, 9, 2568-2575(2009).

    [126] Nieminen T A, Heckenberg N R, Rubinsztein-dunlop H. Optical measurement of microscopic torques[J]. Journal of Modern Optics, 48, 405-413(2001).

    [127] Parkin S J, Knöner G, Nieminen T A et al. Picoliter viscometry using optically rotated particles[J]. Physical Review E, 76, 041507(2007).

    [128] Rodríguez-Sevilla P, Zhang Y H, de Sousa N et al. Optical torques on upconverting particles for intracellular microrheometry[J]. Nano Letters, 16, 8005-8014(2016).

    [129] Yoon Y Z, Kotar J, Yoon G et al. The nonlinear mechanical response of the red blood cell[J]. Physical Biology, 5, 036007(2008).

    [130] Liaw J W, Chen Y S, Kuo M K. Rotating Au nanorod and nanowire driven by circularly polarized light[J]. Optics Express, 22, 26005-26015(2014).

    [131] Lin C L, Lin Y S, Baldeck P. Rotational efficiency of photo-driven Archimedes screws for micropumps[J]. Micromachines, 6, 674-683(2015).

    [132] Metzger N K, Mazilu M, Kelemen L et al. Observation and simulation of an optically driven micromotor[J]. Journal of Optics, 13, 044018(2011).

    [133] Ladavac K, Grier D G. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays[J]. Optics Express, 12, 1144-1149(2004).

    [134] Šípová‑Jungová H, Andrén D, Jones S et al. Nanoscale inorganic motors driven by light: principles, realizations, and opportunities[J]. Chemical Reviews, 120, 269-287(2020).

    [135] Lin C L, Vitrant G, Bouriau M et al. Optically driven Archimedes micro-screws for micropump application[J]. Optics Express, 19, 8267-8276(2011).

    [136] Mushfique H, Leach J, Di Leonardo R et al. Optically driven pumps and flow sensors for microfluidic systems[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 222, 829-837(2008).

    [137] Kuhn S, Stickler B A, Kosloff A et al. Optically driven ultra-stable nanomechanical rotor[J]. Nature Communications, 8, 1670(2017).

    [138] Li T, Ahn J, Xu Z et al. Optically levitated torque sensor and ultrafast nanomechanical rotor[C].

    [139] Nikkhou M. Optical control of a nanomechanical rotor[C], 11463.

    [140] Lin C L, Wang I, Dollet B et al. Velocimetry microsensors driven by linearly polarized optical tweezers[J]. Optics Letters, 31, 329-331(2006).

    [141] Nocentini S, Parmeggiani C, Martella D et al. Optically driven soft micro robotics[J]. Advanced Optical Materials, 6, 1800207(2018).

    [142] Xin H B, Zhao N, Wang Y N et al. Optically controlled living micromotors for the manipulation and disruption of biological targets[J]. Nano Letters, 20, 7177-7185(2020).

    [143] Steager E B, Sakar M S, Kim D H et al. Electrokinetic and optical control of bacterial microrobots[J]. Journal of Micromechanics and Microengineering, 21, 035001(2011).

    [144] Weibel D B, Garstecki P, Ryan D et al. Microoxen: microorganisms to move microscale loads[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 11963-11967(2005).

    [145] Qin H Y, Shi Y Z, Su Z P et al. Exploiting extraordinary topological optical forces at bound states in the continuum[J]. Science Advances, 8, eade7556(2022).

    Tools

    Get Citation

    Copy Citation Text

    Ye Tao, Wei Zhong, Xinyi Wu, Tao He, Chengxing Lai, Zhanshan Wang, Yuzhi Shi, Xinbin Cheng. Optical Torques: Fundamentals and Their Applications[J]. Acta Optica Sinica, 2023, 43(16): 1623012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Jun. 15, 2023

    Accepted: Jul. 17, 2023

    Published Online: Aug. 1, 2023

    The Author Email: Shi Yuzhi (yzshi@tongji.edu.cn), Cheng Xinbin (chengxb@tongji.edu.cn)

    DOI:10.3788/AOS231146

    Topics