Chinese Journal of Lasers, Volume. 50, Issue 5, 0506004(2023)

High‐Resolution Optical Fiber Time‐Division Multiplexing Static Strain Sensing Technology

Kun Cheng1,2, Wentao Zhang1,3、*, Wenzhu Huang1,3, and Jianxiang Zhang1,2
Author Affiliations
  • 1State Key Laboratory of Transducer Technology, Institute of Semiconductors, Chinese Academy of Sciences,Beijing 100083, China
  • 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences,Beijing 100049, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences,Beijing 100049, China
  • show less
    References(25)

    [1] Cui J W. Optical fiber strain sensor for earthquake observation[J]. Laser&Optoelectronics Progress, 24, 45-46(1987).

    [2] He Z Y, Liu Q W, Tokunaga T. Ultrahigh resolution fiber-optic quasi-static strain sensors for geophysical research[J]. Photonic Sensors, 3, 295-303(2013).

    [3] Zumberge M A, Wyatt F K, Yu D X et al. Optical fibers for measurement of earth strain[J]. Applied Optics, 27, 4131-4138(1988).

    [4] Zumberge M A, Hatfield W, Wyatt F K. Measuring seafloor strain with an optical fiber interferometer[J]. Earth and Space Science, 5, 371-379(2018).

    [5] Yuan L B, Tong W J, Jiang S et al. Road map of fiber optic sensor technology in China[J]. Acta Optica Sinica, 42, 0100001(2022).

    [6] He Z Y, Liu Q W, Chen J G. Ultrahigh resolution fiber optic strain sensing system for crustal deformation observation[J]. Acta Physica Sinica, 66, 074208(2017).

    [7] Liu Q W, Tokunaga T, He Z Y. Ultra-high-resolution large-dynamic-range optical fiber static strain sensor using Pound-Drever-Hall technique[J]. Optics Letters, 36, 4044-4046(2011).

    [8] Chen J G, Liu Q W, Fan X Y et al. Sub-nano-strain multiplexed fiber optic sensor array for quasi-static strain measurement[J]. IEEE Photonics Technology Letters, 28, 2311-2314(2016).

    [9] Liu Q W, Zhao S X, He Z Y. Improved Pound-Drever-Hall techniques for high resolution optical fiber grating sensors[J]. Journal of Lightwave Technology, 39, 3846-3854(2021).

    [10] Huang W Z, Feng S W, Zhang W T et al. DFB fiber laser static strain sensor based on beat frequency interrogation with a reference fiber laser locked to a FBG resonator[J]. Optics Express, 24, 12321-12329(2016).

    [11] Huang W Z, Zhang W T, Li F. Swept optical SSB-SC modulation technique for high-resolution large-dynamic-range static strain measurement using FBG-FP sensors[J]. Optics Letters, 40, 1406-1409(2015).

    [12] Chen J G, Liu Q W, Fan X Y et al. 0.1-nano-strain resolution fiber optic sensor for quasi-static strain measurement with 1 kS/s sampling rate[J]. Proceedings of SPIE, 9634, 96343T(2015).

    [13] Butter C D, Hocker G B. Fiber optics strain gauge[J]. Applied Optics, 17, 2867-2869(1978).

    [14] Liao Y, Austin E, Nash P J et al. Highly scalable amplified hybrid TDM/DWDM array architecture for interferometric fiber-optic sensor systems[J]. Journal of Lightwave Technology, 31, 882-888(2013).

    [15] Liu F, Xie S R, Zhang M et al. Downhole microseismic monitoring using time-division multiplexed fiber-optic accelerometer array[J]. IEEE Access, 8, 120104-120113(2020).

    [16] Li Y, Wang Y, Xiao L et al. Phase demodulation methods for optical fiber vibration sensing system: a review[J]. IEEE Sensors Journal, 22, 1842-1866(2022).

    [17] Vlasov A A, Plotnikov M Y, Volkov A V et al. Compensating the influence of background noise on the operation of a fiber-optic interferometer[J]. Journal of Optical Technology, 87, 535-541(2020).

    [18] Volkov A V, Plotnikov M Y, Mekhrengin M V et al. Phase modulation depth evaluation and correction technique for the PGC demodulation scheme in fiber-optic interferometric sensors[J]. IEEE Sensors Journal, 17, 4143-4150(2017).

    [19] Yan L P, Zhou C Y, Xie J D et al. Nonlinear error compensation method for PGC demodulation based on Kalman filtering[J]. Chinese Journal of Lasers, 47, 0904002(2020).

    [20] Požar T, Možina J. Enhanced ellipse fitting in a two-detector homodyne quadrature laser interferometer[J]. Measurement Science and Technology, 22, 085301(2011).

    [21] Eom T B, Kim J Y, Jeong K. The dynamic compensation of nonlinearity in a homodyne laser interferometer[J]. Measurement Science and Technology, 12, 1734-1738(2001).

    [22] Wang C, Burnham-Fay E D, Ellis J D. Real-time FPGA-based Kalman filter for constant and non-constant velocity periodic error correction[J]. Precision Engineering, 48, 133-143(2017).

    [23] Heydemann P L M. Determination and correction of quadrature fringe measurement errors in interferometers[J]. Applied Optics, 20, 3382-3384(1981).

    [24] Wang Z, Bovik A C. Mean squared error: love it or leave it? A new look at signal fidelity measures[J]. IEEE Signal Processing Magazine, 26, 98-117(2009).

    [25] Zhao S X, Liu Q W, Chen J G et al. Realization of sub-nano-strain static resolution with injection-locking between two fiber laser sensors[J]. Journal of Lightwave Technology, 37, 3166-3172(2019).

    Tools

    Get Citation

    Copy Citation Text

    Kun Cheng, Wentao Zhang, Wenzhu Huang, Jianxiang Zhang. High‐Resolution Optical Fiber Time‐Division Multiplexing Static Strain Sensing Technology[J]. Chinese Journal of Lasers, 2023, 50(5): 0506004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber optics and optical communication

    Received: May. 10, 2022

    Accepted: Aug. 15, 2022

    Published Online: Feb. 23, 2023

    The Author Email: Zhang Wentao (zhangwt@semi.ac.cn)

    DOI:10.3788/CJL220842

    Topics