Laser & Optoelectronics Progress, Volume. 61, Issue 12, 1237001(2024)

Dimensionality Reduction Algorithm for Hyperspectral Image Based on Self-Supervised Learning

Zheng Zhou1,3, Yu Yang2、*, Gan Zhang4, Libing Xu3, Mingqing Wang1,3, and Qibing Zhu2
Author Affiliations
  • 1Wuxi Nine Cosmos Technology Co., Ltd., Wuxi 214072, Jiangsu, China
  • 2Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
  • 3Department of Earth System Science, Tsinghua University, Beijing 100084, China
  • 4School of Electronic and Electrical Engineering, Zhengzhou University of Science and Technology, Zhengzhou 450052, Henan, China
  • show less
    Figures & Tables(10)
    Diagram of HSI data dimension reduction based on SSLFE network
    Diagram of external attention module
    Performance evaluation flowchart of dimensionality reduction method
    Visualization of the three HSI datasets. (a)‒(c) Ground truth of Indian Pines, Salinas, and Pavia University datasets; (d)‒(f) mean reflectance of Indian Pines, Salinas, and Pavia University datasets
    Classification accuracy of four dimensionality reduction methods with LSSVM for each class of object
    Classification performance of SSLFE combined with ELM on different size datasets
    • Table 1. Classification performance of RF, LSSVM, and ELM on India Pines dataset

      View table

      Table 1. Classification performance of RF, LSSVM, and ELM on India Pines dataset

      ClassifierIndexICSFCM-FAEBM3GPSSLFE
      RFOA /%78.20 ± 0.3978.96 ± 0.8280.98 ± 0.3281.35 ± 0.31
      AA /%66.12 ± 1.0971.12 ± 0.5972.99 ± 1.0274.99 ± 0.92
      KC /%78.02 ± 0.5182.58 ± 0.5684.62 ± 0.3685.76 ± 0.38
      LSSVMOA /%85.02 ± 0.6985.32 ± 0.5287.50 ± 0.4388.15 ± 0.33
      AA /%84.38 ± 1.0284.62 ± 0.8286.46 ± 0.9387.06 ± 0.82
      KC /%79.98 ± 0.5285.68 ± 0.7387.61 ± 0.3088.21 ± 0.36
      ELMOA /%80.12 ± 0.5984.62 ± 0.4686.58 ± 0.3287.18 ± 0.62
      AA /%71.35 ± 1.1279.95 ± 0.8282.55 ± 1.1283.25 ± 0.82
      KC /%78.08 ± 0.6382.68 ± 0.6984.63 ± 0.3585.13 ± 0.50
    • Table 2. Classification performance of RF, LSSVM, and ELM on Salinas dataset

      View table

      Table 2. Classification performance of RF, LSSVM, and ELM on Salinas dataset

      ClassifierIndexICSFCM-FAEBM3GPSSLFE
      RFOA /%91.30 ± 0.4092.06 ± 0.5892.87 ± 0.3693.25 ± 0.51
      AA /%94.56 ± 0.4694.98 ± 0.7196.09 ± 0.2696.89 ± 0.52
      KC /%90.29 ± 0.5390.92 ± 0.6991.98 ± 0.2892.56 ± 0.58
      LSSVMOA /%93.08 ± 0.7993.85 ± 0.6494.93 ± 0.3195.55 ± 0.33
      AA /%96.22 ± 0.5296.98 ± 0.5997.68 ± 0.2798.56 ± 0.62
      KC /%92.46 ± 0.3993.06 ± 0.5394.50 ± 0.2995.81 ± 0.46
      ELMOA /%90.78 ± 0.6291.22 ± 0.5293.42 ± 0.2594.18 ± 0.52
      AA /%93.11 ± 0.6893.83 ± 0.6896.52 ± 0.2896.65 ± 0.64
      KC /%89.88 ± 0.5090.65 ± 0.8192.66 ± 0.1893.13 ± 0.63
    • Table 3. Classification performance of RF, LSSVM, and ELM on Pavia University dataset

      View table

      Table 3. Classification performance of RF, LSSVM, and ELM on Pavia University dataset

      ClassifierIndexICSFCM-FAEBM3GPSSLFE
      RFOA /%90.82 ± 0.2390.48 ± 0.2293.28 ± 0.2994.03 ± 0.51
      AA /%87.66 ± 0.3287.22 ± 0.5291.19 ± 0.1992.36 ± 0.22
      KC /%87.68 ± 0.2287.19 ± 0.2991.06 ± 0.3992.36 ± 0.28
      LSSVMOA /%94.08 ± 0.3994.65 ± 0.5695.54 ± 0.2596.62 ± 0.29
      AA /%92.38 ± 0.3293.29 ± 0.6293.96 ± 0.3394.69 ± 0.52
      KC /%92.68 ± 0.2892.86 ± 0.3994.23 ± 0.3895.32 ± 0.53
      ELMOA /%90.06 ± 0.2891.56 ± 0.5292.96 ± 0.3693.62 ± 0.52
      AA /%82.12 ± 0.3883.60 ± 0.6487.87 ± 0.6289.92 ± 0.72
      KC /%86.55 ± 0.4688.40 ± 0.5990.55 ± 0.5591.13 ± 0.63
    • Table 4. Classification performance of SSLFE and SAMFE with LSSVM on three datasets

      View table

      Table 4. Classification performance of SSLFE and SAMFE with LSSVM on three datasets

      DatasetIndexSAMFESSLFE
      Indian PinesOA /%92.38 ± 0.5994.03 ± 0.51
      AA /%90.09 ± 0.3992.36 ± 0.22
      KC /%90.02 ± 0.2392.36 ± 0.28
      SalinasOA /%93.14 ± 0.3596.62 ± 0.29
      AA /%92.04 ± 0.5394.69 ± 0.52
      KC /%92.33 ± 0.6895.32 ± 0.53
      Pavia UniversityOA /%91.06 ± 0.2693.62 ± 0.52
      AA /%85.57 ± 0.5289.92 ± 0.72
      KC /%88.36 ± 0.6291.13 ± 0.63
    Tools

    Get Citation

    Copy Citation Text

    Zheng Zhou, Yu Yang, Gan Zhang, Libing Xu, Mingqing Wang, Qibing Zhu. Dimensionality Reduction Algorithm for Hyperspectral Image Based on Self-Supervised Learning[J]. Laser & Optoelectronics Progress, 2024, 61(12): 1237001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Jul. 3, 2023

    Accepted: Aug. 22, 2023

    Published Online: Jun. 5, 2024

    The Author Email: Yu Yang (yangxiangyu1168@163.com)

    DOI:10.3788/LOP231646

    CSTR:32186.14.LOP231646

    Topics