Journal of the Chinese Ceramic Society, Volume. 50, Issue 6, 1475(2022)
Dielectric and Ferroelectric Properties of High-Entropy Perovskite Oxides with A-site Disorder
[1] [1] MEGAW H D. Origin of ferroelectricity in barium titanate and other perovskite-type crystals[J]. Acta Crystallogr, 1952, 5(6): 739-749.
[2] [2] ACOSTA M, NOVAK N, ROJAS V, et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives[J]. Appl Phys Rev, 2017, 4(4): 041305.
[3] [3] CHANDRASEKHAR M, KUMAR P. Synthesis and characterizations of BNT-BT and BNT-BT-KNN ceramics for actuator and energy storage applications[J]. Ceram Int, 2015, 41(4): 5574-5580.
[4] [4] MAHAJAN A, ZHANG H, WU J, et al. Effect of phase transitions on thermal depoling in lead-free 0.94(Bi0.5Na0.5TiO3)-0.06(BaTiO3) based piezoelectrics[J]. J Phys Chem C, 2017, 121(10): 5709-5718.
[5] [5] HAJRA S, SAHOO S, DAS R, et al. Structural, dielectric and impedance characteristics of (Bi0.5Na0.5)TiO3-BaTiO3 electronic system[J]. J Alloys Compd, 2018, 750: 507-514.
[6] [6] URBAN J J, YUN W S, GU Q, et al. Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate[J]. J Am Chem Soc, 2002, 124(7): 1186-1187.
[7] [7] WANG X, YAMADA H, XU C N. Large electrostriction near the solubility limit in BaTiO3-CaTiO3 ceramics[J]. Appl Phys Lett, 2005, 86: 022905-022905.
[8] [8] ZHANG L, WANG X, YANG W, et al. Structure and relaxor behavior of BaTiO3-CaTiO3-SrTiO3 ternary system ceramics[J]. J Appl Phys, 2008, 104(1): 014104.
[9] [9] SASAKI A, CHIBA T, MAMIYA Y, et al. Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems[J]. Jpn J Appl Phys, 1999, 38(9): 5564-5567.
[10] [10] EAKSUWANCHAI P, JIANSIRISOMBOON S, WATCHARAPASORN A. Fabrication, phase and microstructural studies on chemically modified La-doped bismuth sodium titanate ceramics[J]. Ferroelectrics, 2013, 454(1): 162-167.
[11] [11] LU X, XU J, YANG L, et al. Energy storage properties of (Bi0.5Na0.5)0.93Ba0.07TiO3 lead-free ceramics modified by La and Zr co-doping[J]. J Materiomics, 2016, 2(1): 87-93.
[12] [12] DU H L, MA C Y, MA W X, et al. Microstructure evolution and dielectric properties of Ce-doped SrBi4Ti4O15 ceramics synthesized via glycine-nitrate process[J]. Process Appl Ceram, 2018, 12(4): 303-312.
[13] [13] ARSHAD M, DU H, JAVED M S, et al. Fabrication, structure, and frequency-dependent electrical and dielectric properties of Sr-doped BaTiO3 ceramics[J]. Ceram Int, 2020, 46(2): 2238-2246.
[14] [14] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater, 2017, 122: 448-511.
[15] [15] ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides[J]. Nat Commun, 2015, 6(1): 8485.
[16] [16] ZHOU J, ZHANG J, ZHANG F, et al. High-entropy carbide: A novel class of multicomponent ceramics[J]. Ceram Int, 2018, 44(17): 22014-22018.
[17] [17] YE B L, WEN T Q, HUANG K H, et al. First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic[J]. J Am Ceram Soc, 2019, 102(7): 4344-4352.
[18] [18] TALLARITA G, LICHERI R, GARRONI S, et al. Novel processing route for the fabrication of bulk high-entropy metal diborides[J]. Scr Mater, 2019, 158: 100-104.
[19] [19] GILD J, ZHANG Y, HARRINGTON T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Sci Rep, 2016, 6(1): 37946.
[20] [20] CHELLALI M R, SARKAR A, NANDAM S H, et al. On the homogeneity of high entropy oxides: an investigation at the atomic scale[J]. Scr Mater, 2019, 166: 58-63.
[21] [21] ZHAO Z, XIANG H, DAI F-Z, et al. (TiZrHf)P2O7:an equimolar multicomponent or high entropy ceramic with good thermal stability and low thermal conductivity[J]. J Mater Sci Technol, 2019, 35(10): 2227-2231.
[22] [22] YAN X, CONSTANTIN L, LU Y, et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity[J]. J Am Ceram Soc, 2018, 101(10): 4486-4491.
[23] [23] JIN T, SANG X, UNOCIC R R, et al. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy[J]. Adv Mater, 2018, 30(23): 1707512.
[24] [24] BéRARDAN D, FRANGER S, DRAGOE D, et al. Colossal dielectric constant in high entropy oxides[J]. Phys Status Solidi-R, 2016, 10(4): 328-333.
[25] [25] SARKAR A, DJENADIC R, USHARANI N J, et al. Nanocrystalline multicomponent entropy stabilised transition metal oxides[J]. J Eur Ceram Soc, 2017, 37(2): 747-754.
[26] [26] BIESUZ M, SPIRIDIGLIOZZI L, DELL’AGLI G, et al. Synthesis and sintering of (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods[J]. J Mater Sci, 2018, 53(11): 8074-8085.
[27] [27] JIANG S, HU T, GILD J, et al. A new class of high-entropy perovskite oxides[J]. Scr Mater, 2018, 142: 116-120.
[28] [28] LIU J, REN K, MA C, et al. Dielectric and energy storage properties of flash-sintered high-entropy (Bi0.2Na0.2K0.2Ba0.2Ca0.2)TiO3 ceramic[J]. Ceram Int, 2020, 46(12): 20576-20581.
[29] [29] PU Y P, ZHANG Q W, LI R, et al. Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic[J]. Appl Phys Lett, 2019, 115(22): 5.
[30] [30] VINNIK D A, TROFIMOV E A, ZHIVULIN V E, et al. High entropy oxide phases with perovskite structure[J]. Nanomaterials, 2020, 10(2): 268.
[31] [31] XIONG W, ZHANG H, CAO S, et al. Low-loss high entropy relaxor-like ferroelectrics with A-site disorder[J]. J Eur Ceram Soc, 2021, 41(4): 2979-2985.
[34] [34] CHEN H, FU J, ZHANG P, et al. Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability[J]. J Mater Chem A, 2018, 6(24): 11129-11133.
[35] [35] CROSS L E. Relaxorferroelectrics: an overview[J]. Ferroelectrics, 1994, 151(1): 305-320.
[36] [36] OSES C, TOHER C, CURTAROLO S. High-entropy ceramics[J]. Nat Rev Mater, 2020, 5(4): 295-309.
[37] [37] HARWOOD M G, POPPER P, RUSHMAN D F. Curie point of barium titanate[J]. Nature, 1947, 160(4054): 58-59.
[38] [38] NEURGAONKAR R R, NELSON J G, OLIVER J R, et al. Ferroelectric and structural properties of the tungsten bronze system K2Ln3+Nb5O15, Ln= La to Lu[J]. Mater Res Bull, 1990, 25(8): 959-970.
[39] [39] KAR B S, GOSWAMI M N, JANA P C. Effects of lanthanum dopants on dielectric and multiferroic properties of BiFeO3-BaTiO3 ceramics[J]. J Alloys Compd, 2021, 861: 157960.
[40] [40] ZHANG L, PU Y, CHEN M, et al. Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability[J]. Chem Eng J, 2020, 383: 123154.
Get Citation
Copy Citation Text
NI Bo, ZHANG Xiaoyan, ZHEN Ru, QI Xiwei. Dielectric and Ferroelectric Properties of High-Entropy Perovskite Oxides with A-site Disorder[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1475
Special Issue:
Received: Dec. 13, 2021
Accepted: --
Published Online: Dec. 6, 2022
The Author Email:
CSTR:32186.14.