Infrared and Laser Engineering, Volume. 50, Issue 11, 20210546(2021)
Research progresses of microcavity lasers based on lithium niobate on insulator (Invited)
[1] [1] Courjal N, Bernal Mp, Caspar A, et al. Lithium niobate optical waveguides microwaveguides [OLM].[20180815]http:www.intechopen.comchapters61408.
[2] Jin H, Liu F M, Xu P, et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits[J]. Physical Review Letters, 113, 103601(2014).
[3] Poberaj G, Hu H, Sohler W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices[J]. Laser & Photonics Reviews, 6, 488-503(2012).
[4] Lin J, Bo F, Cheng Y, et al. Advances in on-chip photonic devices based on lithium niobate on insulator[J]. Photonics Research, 8, 1910-1936(2020).
[5] Kong Y, Bo F, Wang W, et al. Recent progress in lithium niobate: Optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 32, 1806452(2020).
[6] Li M, Ling J, He Y, et al. Lithium niobate photonic-crystal electro-optic modulator[J]. Nature Communications, 11, 4123(2020).
[7] He M, Xu M, Ren Y, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbits−1 and beyond[J]. Nature Photonics, 13, 359-364(2019).
[8] Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 562, 101-104(2018).
[9] Lu J, Al Sayem A, Gong Z, et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator[J]. Optica, 8, 539-544(2021).
[10] Zhang L, Hao Z, Luo Q, et al. Dual-periodically poled lithium niobate microcavities supporting multiple coupled parametric processes[J]. Optics Letters, 45, 3353-3356(2020).
[11] Hao Z, Zhang L, Mao W, et al. Second-harmonic generation using
[12] Lu J, Surya J B, Liu X, et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W[J]. Optica, 6, 1455-1460(2019).
[13] Chen J Y, Ma ZH, Sua Y M, et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings[J]. Optica, 6, 1244-1245(2019).
[14] Hao Z, Zhang L, Gao A, et al. Periodically poled lithium niobate whispering gallery mode microcavities on a chip[J]. Science China Physics, Mechanics & Astronomy, 61, 114211(2018).
[15] He Y, Yang Q F, Ling J, et al. Self-starting bi-chromatic LiNbO3 soliton microcomb[J]. Optica, 6, 1138-1144(2019).
[16] Zhang M, Buscaino B, Wang C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 568, 373-377(2019).
[17] Wang C, Zhang M, Yu M, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation[J]. Nature Communications, 10, 978(2019).
[18] Gong Z, Liu X, Xu Y, et al. Soliton microcomb generation at 2 μm in
[19] Gong Z, Liu X, Xu Y, et al. Near-octave lithium niobate soliton microcomb[J]. Optica, 7, 1275-1278(2020).
[20] [20] Gao R, Zhang H, Bo F, et al. Broadb highly efficient nonlinear optical processes in onchip integrated lithium niobate microdisk resonats of Qfact above 10^8 [J]. arXiv, 2021: 00399.
[21] Desiatov B, Lončar M. Silicon photodetector for integrated lithium niobate photonics[J]. Applied Physics Letters, 115, 121108(2019).
[22] [22] Izabella P, Surma B, Marek S, et al. Single crystal growth optical properties of LiNbO3 doped with Er3+, Tm3+ Mg2+[C]Proc SPIE, 1995: 6573.
[23] Palatnikov M, Biryukova I, Sidorov N, . et al. Growth and concentration dependencies of rare-earth doped lithium niobate single crystals[J]. Journal of Crystal Growth, 291, 390-397(2006).
[24] Sohler W, Das B K, Dey D, et al. Erbium-doped lithium niobate waveguide lasers[J]. Ieice Transactions On Electronics, 88, 990-997(2005).
[25] Fleuster M, Buchal C, Snoeks E, et al. Optical and structural properties of MeV erbium‐implanted LiNbO3[J]. Journal of Applied Physics, 75, 173-180(1994).
[26] Dutta S, Goldschmidt E A, Barik S, et al. Integrated photonic platform for rare-earth ions in thin film lithium niobate[J]. Nano Letters, 20, 741-747(2020).
[27] Wang S, Yang L, Cheng R, et al. Incorporation of erbium ions into thin-film lithium niobate integrated photonics[J]. Applied Physics Letters, 116, 151103(2020).
[28] Pak D, An H, Nandi A, et al. Ytterbium-implanted photonic resonators based on thin film lithium niobate[J]. Journal Of Applied Physics, 128, 084302(2020).
[29] Xia K, Sardi F, Sauerzapf C, . et al. High-speed tunable microcavities coupled to rare-earth quantum emitters[J]. arXiv, 2104, 00389(2021).
[30] Yang L, Wang S, Shen M, et al. Photonic integration of Er3+: Y2SiO5 with thin-film lithium niobate by flip chip bonding[J]. Optics Express, 29, 15497-15504(2021).
[31] Jia Y, Yao Y, Wang S, et al. Dual-color upconversion luminescence emission from Er: LiNbO3 on-chip ridge waveguides[J]. Results in Physics, 27, 104526(2021).
[32] He L, Özdemir Ş K, Yang L. Whispering gallery microcavity lasers[J]. Laser & Photonics Reviews, 7, 60-82(2013).
[33] Yang L, Carmon T, Min B, et al. Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process[J]. Applied Physics Letters, 86, 091114(2005).
[34] Wang Z, Fang Z, Liu Z, et al. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator[J]. Optics Letters, 46, 380-383(2021).
[35] Liu Y, Yan X, Wu J, et al. On-chip erbium-doped lithium niobate microcavity laser[J]. Science China Physics, Mechanics & Astronomy, 64, 234262(2021).
[36] Luo Q, Hao Z, Yang C, et al. Microdisk lasers on an erbium-doped lithium-niobite chip[J]. Science China Physics, Mechanics & Astronomy, 64, 234263(2021).
[37] Luo Q, Yang C, Zhang R, et al. On-chip erbium-doped lithium niobate microring lasers[J]. Optics Letters, 46, 3275-3278(2021).
[38] Yin D, Zhou Y, Liu Z, et al. Electro-optically tunable microring laser monolithically integrated on lithium niobate on insulator[J]. Optics Letters, 46, 2127-2130(2021).
[39] Yang Z, Lu J, Zhuge M, et al. Controllable growth of aligned monocrystalline CsPbBr3 microwire arrays for piezoelectric-induced dynamic modulation of single-mode lasing[J]. Advanced Materials, 31, 1900647(2019).
[40] Gao R, Guan J, Yao N, et al. On-chip ultra-narrow-linewidth single-mode microlaser on lithium niobate on insulator[J]. Optics Letters, 46, 3131-3134(2021).
[41] Zhang R, Yang C, Hao Z, et al. Integrated lithium niobate single-mode lasers by the Vernier effect[J]. Science China Physics, Mechanics & Astronomy, 64, 294216(2021).
[42] Xiao Z, Wu K, Cai M, et al. Single-frequency integrated laser on erbium-doped lithium niobate on insulator[J]. Optics Letters, 46, 432921(2021).
[43] Li T, Wu K, Cai M, et al. A single-frequency single-resonator laser on erbium-doped lithium niobate on insulator[J]. APL Photonics, 6, 101301(2021).
[44] Lin J, Farajollahi S, Fang Z, et al. Coherent mode-combined ultra-narrow-linewidth single-mode micro-disk[J]. arXiv, 2104, 08843(2021).
Get Citation
Copy Citation Text
Qiang Luo, Fang Bo, Yongfa Kong, Guoquan Zhang, Jingjun Xu. Research progresses of microcavity lasers based on lithium niobate on insulator (Invited)[J]. Infrared and Laser Engineering, 2021, 50(11): 20210546
Category: Special issue-Advanced technology of microcavity photonics materials and devices
Received: Jul. 10, 2021
Accepted: --
Published Online: Dec. 7, 2021
The Author Email: