Laser & Optoelectronics Progress, Volume. 58, Issue 8, 0815007(2021)

Lane Instance Segmentation Algorithm Based on Convolutional Neural Network

Su Zhou1, Di Wu2、*, and Jie Jin1
Author Affiliations
  • 1School of Automotive Studies, Tongji University, Shanghai 201804, China
  • 2Chinesisch-Deutsches Hochschulkolleg, Tongji University, Shanghai 201804, China
  • show less
    Figures & Tables(10)
    Flow chart of the three-branch lane instance segmentation algorithm
    Structure of the DeepLabV3+ network. (a) Encoding-decoding structure of the FPN ; (b) DeepLabV3+ network
    Structure of the DenseASPP
    Structure of the three-branch lane instance segmentation network
    Loss of training set and validation set
    Accuracy of training set and validation set
    Test results of different scenarios. (a) Three-lane (straight); (b) four-lane (curve); (c) vehicle occlusion environment; (d) light and shadow occlusion environment
    • Table 1. Predictive branch network for the number of lanes

      View table

      Table 1. Predictive branch network for the number of lanes

      StructureConvolution kernel numberConvolution kernel size/strideOutput size
      Separable convolution+BN+ReLU163×364×128
      Separable convolution+BN+ReLU163×364×128
      Maxpool2×2/232×64
      Separable convolution+BN+ReLU323×332×64
      Separable convolution+BN+ReLU323×332×64
      Maxpool2×2/216×32
      Separable convolution+BN+ReLU643×316×32
      Separable convolution+BN+ReLU643×316×32
      Maxpool2×2/28×16
      Separable convolution+BN+ReLU1283×38×16
      Separable convolution+BN+ReLU1283×38×16
      Maxpool2×2/24×8
      Global_avgpool4×81×1
      Separable convolution+BN+ReLU1×1XMax+1
    • Table 2. Accuracies of different algorithms unit: %

      View table

      Table 2. Accuracies of different algorithms unit: %

      AlgorithmAccuracyFPFN
      Ref.[7]96.536.171.80
      Ref.[16]96.508.512.69
      Ref.[8]196.407.802.44
      Ref.[17]95.2411.946.20
      Ref.[8]296.2023.583.62
      Ours96.238.347.29
    • Table 3. Running time of different algorithms unit: ms

      View table

      Table 3. Running time of different algorithms unit: ms

      AlgorithmLaneNetOurs
      ModuleTimeModuleTime
      Network inferenceE-Net80DeepLabV3+ with DenseASPP76
      ClusterMean shift85K-means with lane number branch49
      Lane fittingLeast squares4Least squares4
      Sum169129
    Tools

    Get Citation

    Copy Citation Text

    Su Zhou, Di Wu, Jie Jin. Lane Instance Segmentation Algorithm Based on Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0815007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Aug. 25, 2020

    Accepted: Oct. 14, 2020

    Published Online: Apr. 16, 2021

    The Author Email: Di Wu (305655539@qq.com)

    DOI:10.3788/LOP202158.0815007

    Topics