Acta Optica Sinica, Volume. 41, Issue 16, 1627001(2021)
Measurement-Device-Independent Quantum Key Distribution Protocols Based on Multiple Crystal Heralded Source
[1] Bennett C H, Brassard G. An update on quantum cryptography[M]. ∥Blakley G R, Chaum D. Advances in cryptology. Lecture notes in computer science. Heidelberg: Springer, 196, 475-480(1984).
[2] Mayers D. Unconditional security in quantum cryptography[J]. Journal of the ACM, 48, 351-406(2001).
[3] Gottesman D, Lo H K, Lutkenhaus N et al. Security of quantum key distribution with imperfect devices[C]∥International Symposium on Information Theory, 2004. ISIT 2004. Proceedings, June 27-July 2, 2004, Chicago, IL, USA., 136(2004).
[4] Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol[J]. Physical Review Letters, 85, 441-444(2000).
[5] Zhu Q L, Shi L, Wei J H et al. Background light suppression in free space quantum key distribution[J]. Laser & Optoelectronics Progress, 55, 060004(2018).
[6] Du Y N, Xie W Z, Jin X et al. Analysis on quantum bit error rate in measurement device-independent quantum key distribution using weak coherent states[J]. Acta Physica Sinica, 64, 110301(2015).
[7] Zhu Z D, Zhao S H, Wang X Y et al. Phase modulate free measurement device independent quantum key distribution[J]. Journal of Optoelectronics·Laser, 29, 181-186(2018).
[8] Sun S H, Liang L M. Experimental demonstration of an active phase randomization and monitor module for quantum key distribution[J]. Applied Physics Letters, 101, 071107(2012).
[9] Brassard G, Lütkenhaus N, Mor T et al. Limitations on practical quantum cryptography[J]. Physical Review Letters, 85, 1330-1333(2000).
[10] Makarov V, Skaar J. Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols[J]. Quantum Information and Computation, 8, 622-635(2008).
[11] Zhao Y. Fung C H F, Qi B, et al. Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems[J]. Physical Review A, 78, 042333(2008).
[12] Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Physical Review Letters, 108, 130503(2012).
[13] Zhou N R, Zhu K N, Zou X F. Multi-party semi-quantum key distribution protocol with four-particle cluster states[J]. Annalen Der Physik, 531, 1800520(2019).
[14] Sun S H, Gao M, Li C Y et al. Practical decoy-state measurement-device-independent quantum key distribution[J]. Physical Review A, 87, 052339(2013).
[15] Li H H, Gong L H, Zhou N R. New semi-quantum key agreement protocol based on high-dimensional single-particle states[J]. Chinese Physics B, 29, 110304(2020).
[16] Kang D N, He Y F. Quantum key distribution protocols based on asymmetric channels of odd coherent sources[J]. Acta Optica Sinica, 37, 0627001(2017).
[17] Adachi Y, Yamamoto T, Koashi M et al. Simple and efficient quantum key distribution with parametric down-conversion[J]. Physical Review Letters, 99, 180503(2007).
[18] Zhu F, Wang Q. Quantum key distribution protocol based on heralded single photon source[J]. Acta Optica Sinica, 34, 0627002(2014).
[19] Schiavon M, Vallone G, Ticozzi F et al. Heralded single-photon sources for quantum-key-distribution applications[J]. Physical Review A, 93, 012331(2016).
[20] Dong C, Zhao S H, Deng M Y. Measurement-device-independent quantum key distribution with multiple crystal heralded source with post-selection[J]. Quantum Information Processing, 17, 1-12(2018).
[21] Tamaki K, Lo H K. Fung C H F, et al. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw[J]. Physical Review A, 85, 042307(2012).
[22] Tang Z Y, Liao Z F, Xu F H et al. Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution[J]. Physical Review Letters, 112, 190503(2014).
[23] Zhu Z D, Zhao S H, Gu W Y et al. Orbital-angular-momentum-encoded measurement-device-independent quantum key distributions under atmospheric turbulence[J]. Acta Optica Sinica, 38, 1227002(2018).
[24] He Y F, Li D Q, Song C et al. Quantum key distribution protocol based on odd coherent sources and orbital angular momentum[J]. Chinese Journal of Lasers, 45, 0712001(2018).
[25] He Y F, Guo J R, Li C Y et al. Fluctuation analysis of key distribution protocol based on heralded single-photon source and orbital angular momentum[J]. Chinese Journal of Lasers, 47, 0412001(2020).
[26] He Y F, Yang H J, Wang D et al. Quantum key distribution based on heralded pair coherent state and orbital angular momentum[J]. Acta Optica Sinica, 39, 0427001(2019).
[27] Wang L, Zhou Y Y, Zhou X J et al. Passive measurement-device-independent quantum key distribution with orbital angular momentum and pulse position modulation[J]. Optoelectronics Letters, 14, 138-142(2018).
[28] Zhou H C, Wornell G. Adaptive pulse-position modulation for high-dimensional quantum key distribution[C]∥2013 IEEE International Symposium on Information Theory, July 7-12, 2013, Istanbul, Turkey., 359-363(2013).
[29] He Y F, Li C Y, Guo J R et al. Passive measurement-device-independent quantum key distribution based on heralded pair coherent states[J]. Chinese Journal of Lasers, 47, 0912002(2020).
[30] Mao Q P, Wang L, Ma Y Y et al. Measurement-device-independent quantum key distribution with pulse-position modulation[J]. Acta Photonica Sinica, 47, 0306007(2018).
Get Citation
Copy Citation Text
Yefeng \He, Qian Bai, Lina Li, Sihao Chen, Yuwei Qiang. Measurement-Device-Independent Quantum Key Distribution Protocols Based on Multiple Crystal Heralded Source[J]. Acta Optica Sinica, 2021, 41(16): 1627001
Category: Quantum Optics
Received: Feb. 5, 2021
Accepted: Mar. 18, 2021
Published Online: Aug. 12, 2021
The Author Email: Bai Qian (1572318226@qq.com)