Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 1, 176(2021)

Research progress of quantum dot light-emitting devices for display application

GUAN Xiao-ya*, WANG Hong-zhe, SHEN Huai-bin, and DU Zu-liang
Author Affiliations
  • [in Chinese]
  • show less
    References(49)

    [1] [1] MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. Journal of the American Chemical Society, 1993, 115(19): 8706-8715.

    [2] [2] RABANI E, HETéNYI B, BERNE B J, et al. Electronic properties of CdSe nanocrystals in the absence and presence of a dielectric medium [J]. The Journal of Chemical Physics, 1999, 110(11): 5355-5369.

    [3] [3] YANG Y X, ZHENG Y, CAO W R, et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures [J]. Nature Photonics, 2015, 9(4): 259-266.

    [4] [4] BI Y G, FENG J, LIU Y S, et al. Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation [J]. Scientific Reports, 2014, 4(1): 7108.

    [5] [5] SONG J J, WANG O Y, SHEN H B, et al. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer [J]. Advanced Functional Materials, 2019, 29(33): 1808377.

    [6] [6] LI X Y, LIN Q L, SONG J J, et al. Quantum-dot light-emitting diodes for outdoor displays with high stability at high brightness [J]. Advanced Optical Materials, 2020, 8(2): 1901145.

    [7] [7] COE S, WOO W K, BAWENDI M, et al. Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J]. Nature, 2002, 420(6917): 800-803.

    [10] [10] QIAN L, ZHENG Y, XUE J G, et al. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures [J]. Nature Photonics, 2011, 5(9): 543-548.

    [11] [11] BAE W K, PARK Y S, LIM J, et al. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes [J]. Nature Communications, 2013, 4(1): 2661.

    [12] [12] DAI X L, ZHANG Z X, JIN Y Z, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots [J]. Nature, 2014, 515(7525): 96-99.

    [13] [13] ZHANG Z X, YE Y X, PU C D, et al. High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots [J]. Advanced Materials, 2018, 30(28): 1801387.

    [14] [14] SHEN H B, GAO Q, ZHANG Y B, et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency [J]. Nature Photonics, 2019, 13(3): 192-197.

    [15] [15] SHEN H B, CAO W R, SHEWMON N T, et al. High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes [J]. Nano Letters, 2015, 15(2): 1211-1216.

    [16] [16] SHEN H B, WANG S, WANG H Z, et al. Highly efficient blue-green quantum dot light-emitting diodes using stable low-cadmium quaternary-alloy ZnCdSSe/ZnS core/shell nanocrystals [J]. ACS Applied Materials & Interfaces, 2013, 5(10): 4260-4265.

    [17] [17] SHEN H B, WANG H Z, ZHOU C H, et al. Large scale synthesis of stable tricolor Zn1-xCdxSe core/multishell nanocrystals via a facile phosphine-free colloidal method [J]. Dalton Transactions, 2011, 40(36): 9180-9188.

    [18] [18] BROWN P R, KIM D, LUNT R R, et al. Energy level modification in lead sulfide quantum dot thin films through ligand exchange [J]. ACS Nano, 2014, 8(6): 5863-5872.

    [19] [19] DAI X L, DENG Y Z, PENG X G, et al. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization [J]. Advanced Materials, 2017, 29(14): 1607022.

    [20] [20] AKSELROD G M, PRINS F, POULIKAKOS L V, et al. Subdiffusive exciton transport in quantum dot solids [J]. Nano Letters, 2014, 14(6): 3556-3562.

    [21] [21] SHEN H B, LIN Q L, CAO W R, et al. Efficient and long-lifetime full-color light-emitting diodes using high luminescence quantum yield thick-shell quantum dots [J]. Nanoscale, 2017, 9(36): 13583-13591.

    [22] [22] TVRDY K, FRANTSUZOV P A, KAMAT P V. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(1): 29-34.

    [23] [23] BOZYIGIT D, YAREMA O, WOOD V. Origins of low quantum efficiencies in quantum dot LEDs [J]. Advanced Functional Materials, 2013, 23(24): 3024-3029.

    [24] [24] CAO W R, XIANG C Y, YANG Y X, et al. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring [J]. Nature Communications, 2018, 9(1): 2608.

    [25] [25] LIU D Q, CAO S, WANG S Y, et al. Highly stable red quantum dot light-emitting diodes with long T95 operation lifetimes [J]. The Journal of Physical Chemistry Letters, 2020, 11(8): 3111-3115.

    [26] [26] LI Z H, HU Y X, SHEN H B, et al. Efficient and long-life green light-emitting diodes comprising tridentate thiol capped quantum dots [J]. Laser & Photonics Reviews, 2017, 11(1): 1600227.

    [27] [27] PU C D, DAI X L, SHU Y F, et al. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots [J]. Nature Communications, 2020, 11(1): 937.

    [28] [28] GHOSH A P, GERENSER L J, JARMAN C M, et al. Thin-film encapsulation of organic light-emitting devices [J]. Applied Physics Letters, 2005, 86(22): 223503.

    [29] [29] JI W Y, LIU S H, ZHANG H, et al. Ultrasonic spray processed, highly efficient all-inorganic quantum-dot light-emitting diodes [J]. ACS Photonics, 2017, 4(5): 1271-1278.

    [30] [30] SU Q, SUN Y Z, ZHANG H, et al. Origin of positive aging in quantum-dot light-emitting diodes [J]. Advanced Science, 2018, 5(10): 1800549.

    [31] [31] ZHU R D, LUO Z Y, WU S T. Light extraction analysis and enhancement in a quantum dot light emitting diode [J]. Optics Express, 2014, 22(S7): A1783-A1798.

    [32] [32] ZHOU L, OU Q D, CHEN J D, et al. Light manipulation for organic optoelectronics using bio-inspired moth's eye nanostructures [J]. Scientific Reports, 2014, 4: 4040.

    [33] [33] WEI J, XU R P, LI Y Q, et al. Enhanced light harvesting in perovskite solar cells by a bioinspired nanostructured back electrode [J]. Advanced Energy Materials, 2017, 7(20): 1700492.

    [34] [34] LIANG H W, ZHU R D, DONG Y J, et al. Enhancing the outcoupling efficiency of quantum dot LEDs with internal nano-scattering pattern [J]. Optics Express, 2015, 23(10): 12910-12922.

    [35] [35] LIM J, BAE W K, LEE D, et al. InP@ZnSeS, core@composition gradient shell quantum dots with enhanced stability [J]. Chemistry of Materials, 2011, 23(20): 4459-4463.

    [36] [36] YANG X Y, DIVAYANA Y, ZHAO D W, et al. A bright cadmium-free, hybrid organic/quantum dot white light-emitting diode [J]. Applied Physics Letters, 2012, 101(23): 233110.

    [37] [37] LIM J, PARK M, BAE W K, et al. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots [J]. ACS Nano, 2013, 7(10): 9019-9026.

    [38] [38] CAO F, WANG S, WANG F J, et al. A layer-by-layer growth strategy for large-size InP/ZnSe/ZnS core-shell quantum dots enabling high-efficiency light-emitting diodes [J]. Chemistry of Materials, 2018, 30(21): 8002-8007.

    [39] [39] WON Y H, CHO O, KIM T, et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes [J]. Nature, 2019, 575(7784): 634-638.

    [40] [40] PARK J P, LEE J J, KIM S W. Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process [J]. Scientific Reports, 2016, 6(1): 30094.

    [41] [41] ZHANG H, HU N, ZENG Z P, et al. High-efficiency green InP quantum dot-based electroluminescent device comprising thick-shell quantum dots [J]. Advanced Optical Materials, 2019, 7(7): 1801602.

    [42] [42] ZHANG H, MA X Y, LIN Q L, et al. High-brightness blue InP quantum dot-based electroluminescent devices: the role of shell thickness [J]. The Journal of Physical Chemistry Letters, 2020, 11(3): 960-967.

    [43] [43] CHO H, PARK S, SHIN H, et al. Highly efficient deep blue Cd-free quantum dot light-emitting diodes by a p-type doped emissive layer [J]. Small, 2020, 16(40): 2002109.

    [44] [44] JI B T, KOLEY S, SLOBODKIN I, et al. ZnSe/ZnS core/shell quantum dots with superior optical properties through thermodynamic shell growth [J]. Nano Letters, 2020, 20(4): 2387-2395.

    [47] [47] SINGH M, HAVERINEN H M, DHAGAT P, et al. Inkjet printing-process and its applications [J]. Advanced Materials, 2010, 22(6): 673-685.

    [48] [48] LEE K H, LEE J H, KANG H D, et al. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots [J]. ACS Nano, 2014, 8(5): 4893-4901.

    [51] [51] KIM L A, ANIKEEVA P O, COE-SULLIVAN S A, et al. Contact printing of quantum dot light-emitting devices [J]. Nano Letters, 2008, 8(12): 4513-4517.

    [52] [52] CHOI M K, YANG J, KANG K, et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing [J]. Nature Communications, 2015, 6(1): 7149.

    CLP Journals

    [1] WANG Pu, CAI Ping, ZHANG Xiao-wen, XU wei, ZHANG Guan-guang, YAO Ri-hui, NING Hong-long, ZHENG Hua. Recent advances in synthesis and luminescent performance of environmental-friendly InP quantum dot[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(10): 1341

    Tools

    Get Citation

    Copy Citation Text

    GUAN Xiao-ya, WANG Hong-zhe, SHEN Huai-bin, DU Zu-liang. Research progress of quantum dot light-emitting devices for display application[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(1): 176

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 5, 2020

    Accepted: --

    Published Online: Aug. 22, 2021

    The Author Email: GUAN Xiao-ya (Guanxiaoya@henu.edu.cn)

    DOI:10.37188/cjlcd.2020-0263

    Topics