APPLIED LASER, Volume. 41, Issue 6, 1229(2021)
Effect of Key Process Parameters on the Relative Density of Rare Earth Elements Doped Aluminum Alloy Using Selective Laser Melting
[2] [2] PONNUSAMY P, RASHID R A R, MASOOD S H, et al. Mechanicalproperties of SLM-printed aluminium alloys: A review[J]. Materials, 2020, 13(19): 4301.
[3] [3] ABOULKHAIR N T, SIMONELLI M, PARRY L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting[J]. Progress in Materials Science, 2019, 106: 100578.
[4] [4] GU D D, CHANG F, DAI D H. Selective laser melting additive manufacturing of novel aluminum based composites with multiple reinforcing phases[J]. Journal of Manufacturing Science and Engineering, 2015, 137(2): 021010.
[5] [5] XU W, BRANDT M, SUN S, et al. Additive manufacturing of strong and ductile Ti6Al4V by selective laser melting via in situ martensite decomposition[J]. Acta Materialia, 2015, 85: 74-84.
[6] [6] VILARO T, COLIN C, BARTOUT J D. As-fabricated and heat-treated microstructures of the Ti6Al4V alloy processed by selective laser melting[J]. Metallurgical and Materials Transactions A, 2011, 42(10): 3190-3199.
[7] [7] SIMONELLI M, TSE Y Y, TUCK C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti6Al4V[J]. Materials Science and Engineering: A, 2014, 616: 1-11.
[9] [9] JIA Q B, ZHANG F, ROMETSCH P, et al. Precipitation kinetics, microstructure evolution and mechanical behavior of a developed Al-Mn-Sc alloy fabricated by selective laser melting[J]. Acta Materialia, 2020, 193: 239-251.
[10] [10] OLAKANMI E O, COCHRANE R F, DALGARNO K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74: 401-477.
[11] [11] MARTIN J H, YAHATA B D, HUNDLEY J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549: 365-369.
[12] [12] AWD M, TENKAMP J, HIRTLER M, et al. Comparison of microstructure and mechanical properties of scalmalloy produced by selective laser melting and laser metal deposition[J]. Materials, 2017, 11(1): 17.
[13] [13] JIA Q B, ROMETSCH P, KRNSTEINER P, et al. Selective laser melting of a high strength AlMnSc alloy: Alloy design and strengthening mechanisms[J]. Acta Materialia, 2019, 171: 108-118.
[14] [14] LI R D, WANG M B, LI Z M, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms[J]. Acta Materialia, 2020, 193: 83-98.
[15] [15] MA R L, PENG C Q, CAI Z Y, et al. Effect of bimodal microstructure on the tensile properties of selective laser melt Al-Mg-Sc-Zr alloy[J]. Journal of Alloys and Compounds, 2020, 815:152422.
[16] [16] WANG M B, LI R D, YUAN T C, et al. Microstructures and mechanical property ofAlMgScZrMn:A comparison between selective laser melting, spark plasma sintering and cast[J]. Materials Science and Engineering: A, 2019, 756: 354-364.
[17] [17] SPIERINGS A B, DAWSON K, KERN K, et al. SLM-processed Sc-and Zr-modified Al-Mg alloy: Mechanical properties and microstructural effects of heat treatment[J]. Materials Science and Engineering: A, 2017, 701: 264-273.
[19] [19] NORMAN A F, PRANGNELL P B, MCEWEN R S. The solidification behaviour of dilute aluminium-scandium alloys[J]. Acta Materialia, 1998, 46(16): 5715-5732.
[20] [20] VENKATESWARLU K, RAJINIKANTH V, RAY A K, et al. The characteristics of aluminum-scandium alloys processed by ECAP[J]. Materials Science and Engineering: A, 2010, 527(6): 1448-1452.
[21] [21] ZHANG H, GU D D, DAI D H, et al. Influence of scanning strategy and parameter on microstructural feature, residual stress and performance of Sc and Zr modified Al-Mg alloy produced by selective laser melting[J]. Materials Science and Engineering: A, 2020, 788:139593.
[22] [22] WANG D, DOU W H, YANG Y Q. Research on selective laser melting of Ti6Al4V: surface morphologies, optimized processing zone, and ductility improvement mechanism[J]. Metals, 2018, 8(7): 471.
[23] [23] PAL S, LOJEN G, KOKOL V, et al. Evolution of metallurgical properties of Ti6Al4V alloy fabricated in different energy densities in the Selective Laser Melting technique[J]. Journal of Manufacturing Processes, 2018, 35: 538-546.
[24] [24] ZHAO C, PARAB N D, LI X X, et al. Critical instability at moving keyhole tip generates porosity in laser melting[J]. Science, 2020, 370: 1080-1086.
[25] [25] CAO S, CHEN Z E, LIM C V S, et al. Defect, microstructure, and mechanical property of Ti6Al4V alloy fabricated by high-power selective laser melting[J]. JOM, 2017, 69(12): 2684-2692.
[26] [26] GU D D, MEINERS W, WISSENBACH K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 2012, 57(3): 133-164.
Get Citation
Copy Citation Text
Ren Zhini, Xu Di, Huang Jie, Zeng Zhiqiang, Shen Weiguo, Xiao Qingming. Effect of Key Process Parameters on the Relative Density of Rare Earth Elements Doped Aluminum Alloy Using Selective Laser Melting[J]. APPLIED LASER, 2021, 41(6): 1229
Received: Mar. 17, 2021
Accepted: --
Published Online: Feb. 17, 2022
The Author Email: Zhini Ren (renzhini@comac.cc)