The Journal of Light Scattering, Volume. 35, Issue 4, 391(2023)
In-situ SERS Studies on the Degradation of Methyl Orange at Cu2O-Au Composites Surfaces
[1] [1] Huang W, Jing Q, Du Y C, et al. An in Situ SERS Study of Substrate-Dependent Surface Plasmon Induced Aromatic Nitration[J]. J Mater. Chem. C,2015, 3 (20): 5285-5291.
[4] [4] Molinari A, Sarti E, Marchetti N, et al. Degradation of Emerging Concern Contaminants in Water by Heterogeneous Photocatalysis with Na4W10O32[J]. Appl. Catal. B, 2017, 203: 9-17.
[5] [5] Chen Y, Wang L, Gao R, et al. Polarization-Enhanced Direct Z-Scheme ZnO-WO3-X Nanorod Arrays for Efficient Piezoelectric-Photoelectrochemical Water Splitting[J]. Appl. Catal. B, 2019, 259: 118079.
[6] [6] Wang S, Zhu B, Liu M, et al. Direct Z-Scheme ZnO/CdS Hierarchical Photocatalyst for Enhanced Photocatalytic H2-Production Activity[J]. Appl. Catal. B, 2019, 243: 19-26.
[8] [8] Li Q, Guo B, Yu J, et al., Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets[J]. J. Am. Chem. Soc., 2011, 133 (28): 10878-10884.
[9] [9] Fu J, Xu Q, Low J, et al. Ultrathin 2D/2D WO3/G-C3N4 Step-Scheme H2-Production Photocatalyst[J]. Appl. Catal. B, 2019, 243: 556-565.
[10] [10] Xu D, Cheng B, Wang W, et al. Ag2CrO4/G-C3N4/Graphene Oxide Ternary Nanocomposite Z-Scheme Photocatalyst with Enhanced CO2 Reduction Activity[J]. Appl. Catal. B, 2018, 231: 368-380.
[11] [11] Dhiman M, Chalke B, Polshettiwar V, Organosilane Oxidation with a Half Million Turnover Number Using Fibrous Nanosilica Supported Ultrasmall Nanoparticles and Pseudo-Single Atoms of Gold[J]. J. Mater. Chem. A, 2017, 5 (5): 1935-1940.
[12] [12] Zhang W, Wang B, Hao C, et al. Au/Cu2O Schottky Contact Heterostructures with Enhanced Photocatalytic Activity in Dye Decomposition and Photoelectrochemical Water Splitting under Visible Light Irradiation[J]. J Alloys Comp., 2016, 684: 445-452.
[13] [13] Zhang X, Chen Y L, Liu R S, et al. Plasmonic Photocatalysis[J]. Rep. Prog. Phys., 2013, 76 (4): 046401.
[16] [16] Ma L W, Huang Y, Hou M J, et al. Pinhole-Containing, Subnanometer-Thick Al2O3 Shell-Coated Ag Nanorods as Practical Substrates for Quantitative Surface-Enhanced Raman Scattering[J]. J. Phys. Chem. C, 2016, 120 (1): 606-615.
[17] [17] Wang H J, Yang K H, Hsu S C, et al. Photothermal Effects from Au-Cu2O Core-Shell Nanocubes, Octahedra, and Nanobars with Broad Near-Infrared Absorption Tunability[J]. Nanoscale, 2016, 8 (2): 965-972.
[18] [18] Zhang Y H, Liu M M, Chen J L, et al., Recent Advances in Cu2O-Based Composites for Photocatalysis: A Review[J]. Dalton T., 2021, 50 (12): 4091-4111.
[19] [19] Yu X, Zhang J, Chen Y, et al. Ag-Cu2O Composite Films with Enhanced Photocatalytic Activities for Methylene Blue Degradation: Analysis of the Mechanism and the Degradation Pathways[J]. J. Environ. Chem. Eng., 2021, 9 (5): 106161.
Get Citation
Copy Citation Text
SHI Can, YAO Jianlin. In-situ SERS Studies on the Degradation of Methyl Orange at Cu2O-Au Composites Surfaces[J]. The Journal of Light Scattering, 2023, 35(4): 391
Received: Aug. 16, 2023
Accepted: --
Published Online: Jul. 23, 2024
The Author Email: