Chinese Journal of Lasers, Volume. 46, Issue 12, 1202004(2019)

Laser-Arc Hybrid Welding Process and Joint Performances of 6106-T6 Aluminum Alloy Profiles for High Speed Trains

Xiaohui Han1、**, Shuaizhen Li1, Zhendong Mao1, Peng Wen2,3, Zhongxiu Li2,3, and Shikai Wu2,3、*
Author Affiliations
  • 1CRRC Qingdao Sifang Co., Ltd., Qingdao, Shandong 266111, China
  • 2Key Laboratory of Trans-Scale Laser Manufacturing Technology, Ministry of Education, Beijing 100124, China
  • 3Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
  • show less
    Figures & Tables(12)
    Diagram of welding setup
    Sizes of tensile and fatigue specimens
    Cross-sections of hybrid welded joints. (a) Laser-CMT hybrid welded joint; (b) laser-VPTIG hybrid welded joint; (c) laser-MIG hybrid welded joint
    Microstructures of different hybrid welded joints. (a) Fusion line upper section of laser-CMT hybrid welded joint; (b) fusion line upper section of laser-VPTIG hybrid welded joint; (c) fusion line upper section of laser-MIG hybrid welded joint; (d) fusion line lower section of laser-CMT hybrid welded joint; (e) fusion line lower section of laser-VPTIG hybrid welded joint; (f) fusion line lower part of laser-MIG hybrid welded joint; (g) upper part of center of laser-CMT hybrid weld; (h) lower par
    Tensile strength of three kinds of hybrid welded joints
    Microhardness of three kinds of hybrid welded joints
    S-N curves of three kinds of hybrid welded joints
    Microstructures of fatigue crack initiation zone of three kinds of hybrid welded joints.(a) Laser-CMT hybrid welded joint; (b) laser-VPTIG hybrid welded joint; (c) laser-MIG hybrid welded joint
    Fatigue fracture morphologies of three kinds of hybrid welded joints. (a) Fatigue crack initiation zone of laser-CMT hybrid welded joint; (b) extended zone of laser-CMT hybrid welded joint; (c) instantaneous break zone of laser-CMT hybrid welded joint; (d) fatigue crack initiation zone of laser-VPTIG hybrid welding joint; (e) extended zone of laser-VPTIG hybrid welding joint; (f) instantaneous break zone of laser-VPTIG hybrid welded joint; (g) fatigue crack initiation zone of laser-MIG hybrid we
    • Table 1. Chemical compositions of 6106 aluminum alloy and welding wire

      View table

      Table 1. Chemical compositions of 6106 aluminum alloy and welding wire

      MaterialMass fraction /%
      SiFeCuMnMgCrZnTiAl
      6106-T60.30-0.60≤0.35≤0.250.05-0.200.40-0.80≤0.20≤0.10-Bal.
      ER53560.0570.120.011<0.134.90.0650.130.11Bal.
    • Table 2. Tensile properties of 6106-T6 aluminum alloy profiles at room temperature

      View table

      Table 2. Tensile properties of 6106-T6 aluminum alloy profiles at room temperature

      Thicknesst /mmYieldstrengthRp0.2 /MPaTensilestrengthRm /MPaElongation /%
      ≤6≥200≥2508
    • Table 3. Optimized welding parameters of three welding modes

      View table

      Table 3. Optimized welding parameters of three welding modes

      Welding modeLaser power /WWelding speed /(m·min-1)Wire feeding speed /(m·min-1)Welding current /A
      Laser-CMT30005693
      Laser-VPTIG350057200
      Laser-MIG7000411250
    Tools

    Get Citation

    Copy Citation Text

    Xiaohui Han, Shuaizhen Li, Zhendong Mao, Peng Wen, Zhongxiu Li, Shikai Wu. Laser-Arc Hybrid Welding Process and Joint Performances of 6106-T6 Aluminum Alloy Profiles for High Speed Trains[J]. Chinese Journal of Lasers, 2019, 46(12): 1202004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Jun. 20, 2019

    Accepted: Aug. 7, 2019

    Published Online: Dec. 2, 2019

    The Author Email: Han Xiaohui (13793237339@139.com), Wu Shikai (wushikai@bjut.edu.cn)

    DOI:10.3788/CJL201946.1202004

    Topics