Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 5, 723(2021)
Comparative study of the multi-atlas segmentation algorithm based on ANTs registration
[1] [1] CHEN Y, SHI L Y, FENG Q J, et al. Artifact suppressed dictionary learning for low-dose CT image processing[J]. IEEE Transactions on Medical Imaging, 2014, 33(12): 2271-2292.
[2] [2] YIN X R, ZHAO Q L, LIU J, et al. Domain progressive 3D residual convolution network to improve low-dose CT imaging[J]. IEEE Transactions on Medical Imaging, 2019, 38(12): 2903-2913.
[5] [5] CHEN Y, MA J H, FENG Q J, et al. Nonlocal prior Bayesian tomographic reconstruction[J]. Journal of Mathematical Imaging and Vision, 2008, 30(2): 133-146.
[6] [6] JOSHI S, DAVIS B, JOMIER M, et al. Unbiased diffeomorphic atlas construction for computational anatomy[J]. Neuroimage, 2004, 23 Suppl 1: S151-S160.
[7] [7] SHATTUCK D W, LEAHY R M. BrainSuite: an automated cortical surface identification tool[J]. Medical Image Analysis, 2002, 6(2): 129-142.
[8] [8] ALJABAR P, HECKEMANN R A, HAMMERS A, et al. Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy[J]. NeuroImage, 2009, 46(3): 726-738.
[9] [9] AWATE S P, ZHU P H, WHITAKER R T. How many templates does it take for a good segmentation?: Error analysis in multiatlas segmentation as a function of database size[C]//Second International Workshop on Multimodal Brain Image Analysis. Nice, France: Springer, 2012: 103-114.
[10] [10] TAO W B. Iterative narrowband-based graph cuts optimization for geodesic active contours with region forces (GACWRF)[J]. IEEE Transactions on Image Processing, 2012, 21(1): 284-296.
[13] [13] VERCAUTEREN T, PENNEC X, PERCHANT A, et al. Diffeomorphic demons: efficient non-parametric image registration[J]. NeuroImage, 2009, 45(1 Suppl 1): S61-S72.
[14] [14] AVANTS B B, TUSTISON N J, SONG G, et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration[J]. NeuroImage, 2011, 54(3): 2033-2044.
[15] [15] WANG H Z, DAS S R, SUH J W, et al. A learning-based wrapper method to correct systematic errors in automatic image segmentation: consistently improved performance in hippocampus, cortex and brain segmentation[J]. NeuroImage, 2011, 55(3): 968-985.
[16] [16] ZHENG Q, FAN Y. Integrating semi-supervised label propagation and random forests for multi-atlas based hippocampus segmentation[J]. Proceedings. IEEE International Symposium on Biomedical Imaging, 2018, 2018: 154-157.
[17] [17] Alzheimer’s disease neuroimaging initiative[EB/OL].[2018-11-20]. http://adni.loni.usc.edu.
[18] [18] Brain-Development. Brain atlases[EB/OL].[2018-11-20]. http://biomedic.doc.ic.ac.uk/brain-development/.
[19] [19] JOHNSON H J, MCCORMICK M M, IBANEZ L.The ITK Software Guide Book 1: Introduction and Development Guidelines-Volume 1[M]. Clifton Park: Kitware, Inc., 2015.
[20] [20] LIU H, YAN M, SONG E M, et al. Label fusion method based on sparse patch representation for the brain MRI image segmentation[J]. IET Image Processing, 2017, 11(7): 502-511.
Get Citation
Copy Citation Text
JIANG Yan, MA Yu, LU Yue, WANG Yuan, LIANG Yuan-zhe, LI Xia. Comparative study of the multi-atlas segmentation algorithm based on ANTs registration[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(5): 723
Category:
Received: Sep. 25, 2020
Accepted: --
Published Online: Aug. 26, 2021
The Author Email: MA Yu (mayu95@163.com)