Infrared Technology, Volume. 46, Issue 3, 233(2024)
Research Progress on Materials and Devices of HgCdTe p-on-n Double Layer Heterojunction Grown by VLPE
[1] [1] Lawson W, Nielsen S, Putley E, et al. Preparation and properties of HgTe and mixed crystals of HgTe-CdTe[J]. Journal of Physics and Chemistry of Solids, 1959, 9(3-4): 325-329.
[2] [2] Capper P. Properties of narrow-gap cadmium-based compounds[J]. Optoelectronics IEE Proceedings, 1994, 142(6): 315.
[3] [3] LEI W, Antoszewski J, Faraone O. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors[J]. Applied Physics Reviews, 2015, 2(4): 041303.
[4] [4] Paul W Kruse, Laurence D McGlauchlin, Richmond B McQuistan. Elements of Infrared Technology[M]. New York: Wiley, 1962.
[5] [5] Rogalski A, Martyniuk P, Kopytko M, et al. Trends in performance limits of the hot infrared photodetectors[J]. Applied Sciences-Basel, 2021, 11(2): 501.
[6] [6] Kinch M A. The future of infrared; III–Vs or HgCdTe?[J]. Journal of Electronic Materials, 2015, 44(9): 1-8.
[7] [7] KONG Jincheng, LI Yanhui, YANG Chunzhang, et al. Progress in MBE growth of HgCdTe at kunming institute of physics[J]. Journal of Synthetic Crystals, 2020, 49(12): 2221-2229.
[8] [8] YANG Jianrong. Physics and Technology of HgCdTe Materials[M]. Beijing: National Industry Press, 2012.
[9] [9] SONG Linwei, KONG Jincheng, LI Dongsheng, et al. Au-doped HgCdTe infrared material and device technology[J]. Infrared Technology, 2021, 43(2): 97-103.
[10] [10] Jones C L, Hipwood L G, Shaw C J, et al. High-performance MW and LW IRFPAs made from HgCdTe grown by MOVPE[J]. Proceedings of SPIE. International Society for Optics and Photonics, 2006, 6206: 620610-1-12.
[11] [11] Kinch M A. HDVIPTM FPA technology at DRS[C]//Proceedings of SPIE - International Society for Optics and Photonics, 2001, 4369: 566-578.
[12] [12] LI Lihua, XIONG Bojun, YANG Chaowei, et al. Research on p-on-n LWIR and VLWIR HgCdTe infrared focal plane detectors technology[J]. Journal of Infrared and Millimeter Waves, 2022, 41(3): 534-539.
[13] [13] Ashley T, Elliott C T. Non-equilibrium devices for infrared detection[J]. Electronics Letters, 1985, 21(10): 451-452.
[14] [14] YU Jianyun, KONG Jincheng, QIN Gang, et al. High operation temperature non-equilibrium photovoltaic HgCdTe devices[J]. Infrared Technology, 2023, 45(1): 15-22.
[15] [15] Klipstein P. XBn barrier photodetectors for high sensitivity and high operating temperature infrared sensors[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2008, 6940: 69402U.
[16] [16] Klipstein P. Depletion-less photodiode with suppressed dark current and method for producing the same[P]. United States Patent 7795640, [2010-09-14].
[17] [17] Gravrand O, Mollard L, Largeron C, et al. Study of LWIR and VLWIR focal plane array developments: comparison between p-on-n and different n-on-p technologies on LPE HgCdTe[J]. Journal of Electronic Materials, 2009, 38(8): 1733-1740.
[18] [18] Casselman T N. Calculation of the Auger lifetime in degenerate n-type (Hg,Cd)Te[C]//Physics of Narrow Gap Semiconductors, 1982, 152(4): 147-151.
[19] [19] Casselman T N. Calculation of the Auger lifetime in p-type Hg1-xCdxTe[J]. Journal of Applied Physics, 1981, 52(2): 848-854.
[20] [20] Jozwikowski K, Jozwikowska A. The influence of shallow donor and acceptor states on carriers' lifetime in long wavelength HgCdTe infrared detectors[J]. Infrared Physics and Technology, 2021, 117: 103853.
[21] [21] Kopytko M, Rogalski A. Figure of merit for infrared detector materials[J]. Infrared Physics and Technology, 2022, 122: 104063.
[22] [22] QIN Gang, JI Fengqiang, XIA Likun, et al. HgCdTe high operation temperature infrared detectors[J]. Infrared and Laser Engineering, 2021, 50(4): 20200328-1-20200328-11.
[23] [23] Kopytko M, Rogalski A. New insights into the ultimate performance of HgCdTe photodiodes[J]. Sensors and Actuators A: Physical, 2022, 339: 113511.
[24] [24] Vilela M F, Hogan J, Fennell B T, et al. Infinite-Melt vertical liquid-Phase epitaxy of HgCdTe from Hg solution: from VLWIR to SWIR[J]. Journal of Electronic Materials, 2022, 51(9): 4731-4741.
[25] [25] SHEN Chuan, CHEN Lu, BU Shundong, et al. Effect of thermal annealing on the interface changes of multi-layer HgCdTe P-on-N materials grown by MBE[J]. J. Infrared Millim. Waves, 2021, 40(2): 156-160.
[26] [26] Wenus J, Rutkowski J, Rogalski A. Two-dimensional analysis of doublelayer heterojunction HgCdTe photodiodes[J]. IEEE Transactions on Electron Devices, 2001, 48(7): 1326-1332.
[27] [27] CHEN Zhengchao, TANG Libin, HAO Qun, et al. Research progress on infrared detection materials and devices of HgCdTe multilayer heterojunction[J]. Infrared Technology, 2022, 44(9): 889-903.
[28] [28] Lovecchio P, Wong K, Parodos T, et al. Advances in liquid phase epitaxial growth of Hg1-xCdxTe for SWIR through VLWIR photodiodes[J/OL]. Infrared Detector Materials and Devices, 2004: 65-72. https://www.researchgate.net/publication/253633857_Advances_in_liquid_phase_epitaxial_growth_of_Hg1-xCdxTe_for_SWIR_through_VLW IR_photodiodes.
[29] [29] LI X, WANG X, ZHOU S, et al. Comparative study on dark current mechanisms of n-on-p and p-on-n long-wavelength HgCdTe infrared detectors[J]. Infrared Physics & Technology, 2022, 123: 104166.
[30] [30] Reibel Y, Rubaldo L, Bonnouvrier G, et al. Latest developments in advanced MCT infrared cooled detectors[C]//Electro-Optical and Infrared Systems: Technology and Applications VIII, 2011: 15-26.
[31] [31] Castelein P, Baier N, Gravrand O, et al. Latest developments in the p-on-n HgCdTe architecture at DEFIR[C]//Infrared Technology and Applications XL, 2014: 853-866.
[32] [32] Lutz H, Breiter R, Figgemeier H, et al. Improved high operating temperature MCT MWIR modules[C]//Infrared Technology and Applications XL, 2014: 395-406.
[33] [33] Tennant W, Lee D, Zandian M, et al. MBE HgCdTe technology: a very general solution to IR detection, described by “Rule 07”, a very convenient heuristic[J]. Journal of Electronic Materials, 2008, 37(9): 1406-1410.
[34] [34] QIN Gang, LI Dongsheng. The As-doping technique of HgCdTe thin film by MBE[J]. Infrared Technology, 2015, 37(10): 858-863.
[35] [35] Arias J, Zandian M, Pasko J, et al. Molecular beam epitaxy growth and insitu arsenic doping of p-on-n HgCdTe heterojunctions[J]. Journal of Applied Physics, 1991, 69(4): 2143-2148.
[36] [36] Capper P, Whiffin P A C, Easton B C, et al. Group V acceptor doping of CdxHg1-xTe layers grown by metal-organic vapour phase epitaxy[J]. Materials Letters, 1988, 6: 365-368.
[37] [37] Hipwood L G, Baker I M, Jones C L, et al. LW IRFPAs made from HgCdTe grown by MOVPE for use in multispectral imaging[J]//Infrared Technology and Applications XXXIV, 2008, 6940: 69400G-69400G-8.
[38] [38] Bubulac L O. Defect, diffusion and activation in ion implanted HgCdTe[J]. Journal of Crystal Growth, 1988, 86: 723-734.
[39] [39] Gilmore A S, Bangs J, Gerrish A, et al. Advancements in HgCdTe VLWIR materials[C]//Infrared Technology and Applications XXXI, 2005: 5783, DOI:10.1117/12.607604.
[40] [40] Bratt P, Johnson S, Rhiger D, et al. Historical perspectives on HgCdTe material and device development at raytheon vision systems[C]//Infrared Technology and Applications XXXV, 2009, 7298: 1044-1078.
[41] [41] Reine M B. History of HgCdTe infrared detectors at BAE systems[C]//Infrared Technology and Applications XXXV, 2009, 7298: 995-1020.
[42] [42] LI Xiangyang, FANG Jiaxiong. Theoretical calculation of doping optimization for p-on-n HgCdTe photodiode[J]. Journal of Infrared and Millimeter Waves, 2002, 21(1): 71-73.
[43] [43] Prigozhin I, Zhu M, Bellotti E. Numerical modeling of graded bandgap long wavelength infrared HgCdTe avalanche photodiodes[J]. IEEE Transactions on Electron Devices, 2022, 69(7): 3791-3797.
[44] [44] Schuster J, Dewames R, Wijewarnasuriya P. Dark currents in a fullydepleted LWIR HgCdTe P-on-n heterojunction: analytical and numerical simulations[J]. Journal of Electronic Materials, 2017, 46: 6295-6305.
[45] [45] Reine M B, Tobin S P, Norton P W, et al. Very long wavelength (>15μm) HgCdTe photodiodes by liquid phase epitaxy[J]. Infrared Detector Materials and Devices, 2004, 5564: 54-64.
[46] [46] Stobie J, Hairston A, Tobin S, et al. VLIWR HgCdTe staring focal plane array development[C]//Proceedings of SPIE - Infrared Systems & Photoelectronic Technology II, 2007, 6660: 66600L-1-10.
[47] [47] Hutchins M, Smith F, Tobin S, et al. Improved operability in Hg 1-xCdxTe detector arrays[J]. Journal of Electronic Materials, 1999, 28: 624-629.
[48] [48] Smith E, Venzor G, Newton M, et al. Inductively coupled plasma etching for large format HgCdTe focal plane array fabrication[J]. Journal of Electronic Materials, 2005, 34: 746-753.
[49] [49] Benson J, Stoltz A, Varesi J, et al. Determination of the ion angular distribution for electron cyclotron resonance plasma-etched HgCdTe trenches[J]. Journal of Electronic Materials, 2004, 33: 543-551.
[50] [50] ZHAO W, Cook J, Parodos T, et al. Microstructural characterization of CdTe surface passivation layers[J]. Journal of Electronic Materials, 2010, 39: 924-929.
[51] [51] Reine M, Tobin S, Norton P, et al. Predicted performance of HgCdTe photodiodes for 15-25 μm detection[C]//Infrared Technology and Applications XXXI, 2005, 5783: 211-222.
[52] [52] Maschhoff K R. AIRS-Light instrument concept and critical technology development[C]//Infrared Spaceborne Remote Sensing X, 2002: 242-249.
[53] [53] Krueger E E, Lee D, Miller C R, et al. HgCdTe photodiodes with cutoff wavelengths of 17 ?m at 70 K for use in high-resolution interferometers for remote sensing[C]//Infrared Spaceborne Remote Sensing V, 1997: 355-372.
[54] [54] TIAN Zhen, SONG Shufang, WANG Xiaoju, et al. Study on fabrication of p-on-n LW HgCdTe heterostructure materials[J]. Laser & Infrared, 2018, 48(6): 730-734
[55] [55] KONG Jincheng, SONG Linwei, QI Wenbin, et al. Progress in LPE growth of HgCdTe at kunming institute of physics[J]. Infrared Technology, 2023, 45(2): 111-122.
[56] [56] SONG Linwei, KONG Jincheng, ZHAO Peng, et al. Research of Audoped LWIR HgCdTe detector[J]. Infrared and Laser Engineering, 2023, 52(4): 20220655.
[57] [57] Schuster J, Dewames R, Decuir Jr E, et al. Heterojunction depth in P+-on-n eSWIR HgCdTe infrared detectors: generation-recombination suppression[C]//Infrared Sensors, Devices, and Applications V, 2015: 7-18.
Get Citation
Copy Citation Text
WANG Wenjin, KONG Jincheng, QI Wenbin, ZHANG Yang, SONG Linwei, WU Jun, ZHAO Wen, YU Jianyun, QIN Gang. Research Progress on Materials and Devices of HgCdTe p-on-n Double Layer Heterojunction Grown by VLPE[J]. Infrared Technology, 2024, 46(3): 233
Category:
Received: Jul. 14, 2023
Accepted: --
Published Online: Sep. 2, 2024
The Author Email: Jincheng KONG (kongjincheng@163.com)
CSTR:32186.14.