Journal of Synthetic Crystals, Volume. 50, Issue 3, 578(2021)
Research Progress of Low-Dimensional Group-VA Nanomaterials: from Structural Properties to Preparation Applications
[1] [1] NOVOSELOV K S, ANDREEVA D V, REN W C, et al. Graphene and other two-dimensional materials[J]. Frontiers of Physics, 2019, 14(1): 1-4.
[4] [4] GOH E, CHIN H C, WONG K L, et al. Modeling and simulation of the electronic properties in graphene nanoribbons of varying widths and lengths using tight-binding Hamiltonian[J]. Journal of Nanoelectronics and Optoelectronics, 2018, 13(2): 289-300.
[6] [6] REN X L, LIAN P C, XIE D L, et al. Properties, preparation and application of black phosphorus/phosphorene for energy storage: a review[J]. Journal of Materials Science, 2017, 52(17): 10364-10386.
[7] [7] AMARAL P E M, NIEMAN G P, SCHWENK G R, et al. High electron mobility of amorphous red phosphorus thin films[J]. Angewandte Chemie International Edition, 2019, 58(20): 6766-6771.
[8] [8] ZHANG Y C, JIANG Q Q, LANG P, et al. Fabrication and applications of 2D black phosphorus in catalyst, sensing and electrochemical energy storage[J]. Journal of Alloys and Compounds, 2021, 850: 156580.
[9] [9] ZHANG S, GUO S, CHEN Z, et al. Recent progress in 2D group-VA semiconductors: from theory to experiment[J]. Chemical Society Reviews, 2018, 47(3): 982-1021.
[10] [10] BELADI-MOUSAVI S M, POURRAHIMI A M, SOFER Z, et al. Atomically thin 2D-arsenene by liquid-phased exfoliation: toward selective vapor sensing[J]. Advanced Functional Materials, 2019, 29(5): 1807004.
[11] [11] GIBAJA C, RODRIGUEZ-SAN-MIGUEL D, ARES P, et al. Few-layer antimonene by liquid-phase exfoliation[J]. Angewandte Chemie International Edition, 2016, 55(46): 14345-14349.
[12] [12] CAI X Y, CHEN Y Z, SUN B, et al. Two-dimensional Blue-AsP monolayers with tunable direct band gap and ultrahigh carrier mobility show promising high-performance photovoltaic properties[J]. Nanoscale, 2019, 11(17): 8260-8269.
[13] [13] GUO S Y, ZHOU W H, CAI B, et al. Band engineering realized by chemical combination in 2D group VA-VA materials[J]. Nanoscale Horizons, 2019, 4(5): 1145-1152.
[14] [14] ZHAO A L, LI H, HU X J, et al. Review of 2D group VA material-based heterostructures[J]. Journal of Physics D: Applied Physics, 2020, 53(29): 293002.
[15] [15] GALLUZZI M, ZHANG Y L, YU X F. Mechanical properties and applications of 2D black phosphorus[J]. Journal of Applied Physics, 2020, 128(23): 230903.
[16] [16] SUN Y, WANG L Y, WANG C Y, et al. Mechanical properties of 2D blue phosphorus and temperature effect[J]. Nanotechnology, 2021, 32(8): 085702.
[17] [17] ZHU Z, TOMNEK D. Semiconducting layered blue phosphorus: a computational study[J]. Physical Review Letters, 2014, 112(17): 176802.
[18] [18] ZHANG S L, XIE M Q, LI F Y, et al. Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities[J]. Angewandte Chemie International Edition, 2016, 55(5): 1666-1669.
[20] [20] QIAO J S, KONG X H, HU Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communications, 2014, 5: 4475.
[23] [23] KONABE S, YAMAMOTO T. Significant enhancement of the thermoelectric performance of phosphorene through the application of tensile strain[J]. Applied Physics Express, 2015, 8: 015202
[24] [24] KONABE S, YAMAMOTO T. Significant enhancement of the thermoelectric performance of phosphorene through the application of tensile strain[J]. Applied Physics Express, 2015, 8(1): 015202.
[26] [26] ISLAND J O, STEELE G A, VAN DER ZANT H S J, et al. Environmental instability of few-layer black phosphorus[J]. 2D Materials, 2015, 2(1): 011002.
[27] [27] LIU Q H, ZHANG X W, ABDALLA L B, et al. Switching a normal insulator into a topological insulator via electric field with application tophosphorene[J]. Nano Letters, 2015, 15(2): 1222-1228.
[28] [28] ISLAND J O, STEELE G A, VAN DER ZANT H S J, et al. Environmental instability of few-layer black phosphorus[J]. 2D Materials, 2015, 2(1): 011002.
[29] [29] KOU L Z, MA Y D, TAN X, et al. Structural and electronic properties of layered arsenic and antimony arsenide[J]. The Journal of Physical Chemistry C, 2015, 119(12): 6918-6922.
[30] [30] IORDANIDOU K, KIOSEOGLOU J, AFANAS'EV V V, et al. Intrinsic point defects in buckled and puckered arsenene: a first-principles study[J]. Physical Chemistry Chemical Physics, 2017, 19(15): 9862-9871.
[31] [31] YUAN S F, SHEN C F, DENG B C, et al. Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures[J]. Nano Letters, 2018, 18(5): 3172-3179.
[32] [32] ZHANG S L, YAN Z, LI Y F, et al. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions[J]. Angewandte Chemie International Edition, 2015, 54(10): 3112-3115.
[33] [33] AKTRK E, AKTRK O , CIRACI S. Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties[J]. Physical Review B, 2016, 94: 014115.
[34] [34] KECIK D, DURGUN E, CIRACI S. Stability of single-layer and multilayer arsenene and their mechanical and electronic properties[J]. Physical Review B, 2016, 94(20): 205409.
[35] [35] ZHANG S, GUO S, CHEN Z, et al. Recent progress in 2D group-VA semiconductors: from theory to experiment[J]. Chemical Society Reviews, 2018, 47(3): 982-1021.
[36] [36] BRENT J R, SAVJANI N, LEWIS E A, et al. Production of few-layer phosphorene by liquid exfoliation of black phosphorus[J]. Chemical Communications (Cambridge, England), 2014, 50(87): 13338-13341.
[38] [38] LU W L, NAN H Y, HONG J H, et al. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization[J]. Nano Research, 2014, 7(6): 853-859.
[39] [39] ARES P, AGUILAR-GALINDO F, RODRGUEZ-SAN-MIGUEL D, et al. Mechanical isolation of highly stable antimonene under ambient conditions[J]. Advanced Materials, 2016, 28(30): 6332-6336.
[40] [40] ZHAO J, LIU C Y, GUO W L, et al. Prediction on the light-assisted exfoliation of multilayered arsenene by the photo-isomerization of azobenzene[J]. Nanoscale, 2017, 9(21): 7006-7011.
[41] [41] TSAI H S, CHEN C W, HSIAO C H, et al. The advent of multilayer antimonene nanoribbons with room temperature orange light emission[J]. Chemical Communications (Cambridge, England), 2016, 52(54): 8409-8412.
[42] [42] LU L, TANG X, CAO R, et al. Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical kerr media with enhanced stability[J]. Advanced Optical Materials, 2017, 5(17): 1700301.
[43] [43] TSAI H S, WANG S W, HSIAO C H, et al. Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons[J]. Chemistry of Materials, 2016, 28(2): 425-429.
[44] [44] REIS F, LI G, DUDY L, et al. Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin Hall material[J]. Science, 2017, 357(6348): 287-290.
[45] [45] SUN H H, WANG M X, ZHU F F, et al. Coexistence of topological edge state and superconductivity in bismuth ultrathin film[J]. Nano Letters, 2017, 17(5): 3035-3039.
[47] [47] WU X, SHAO Y, LIU H, et al. Epitaxial growth and air-stability of monolayer antimonene on PdTe2[J]. Advanced Materials, 2017, 29(11): 1605407.
[48] [48] HUSSAIN N, LIANG T X, ZHANG Q Y, et al. Ultrathin Bi nanosheets with superior photoluminescence[J]. Small, 2017, 13(36): 1701349.
[49] [49] KOENIG S P, DOGANOV R A, SCHMIDT H, et al. Electric field effect in ultrathin black phosphorus[J]. Applied Physics Letters, 2014, 104(10): 103106.
[50] [50] FENG Q L, LIU H Y, ZHU M J, et al. Electrostatic functionalization and passivation of water-exfoliated few-layer black phosphorus by poly dimethyldiallyl ammonium chloride and its ultrafast laser application[J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9679-9687.
[51] [51] LIU J M, CHEN Y, LI Y, et al. Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber[J]. Photonics Research, 2018, 6(3): 198-203.
[52] [52] KUMAR V, BRENT J R, SHORIE M, et al. Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker[J]. ACS Applied Materials & Interfaces, 2016, 8(35): 22860-22868.
[53] [53] KOU L Z, FRAUENHEIM T, CHEN C F. Phosphorene as a superior gas sensor: selective adsorption and distinct I-V response[J]. The Journal of Physical Chemistry Letters, 2014, 5(15): 2675-2681.
[54] [54] ZHANG H P, KOU L Z, JIAO Y, et al. Strain engineering of selective chemical adsorption on monolayer black phosphorous[J]. Applied Surface Science, 2020, 503: 144033.
[55] [55] ABBAS A N, LIU B L, CHEN L, et al. Black phosphorus gas sensors[J]. ACS Nano, 2015, 9(5): 5618-5624.
[56] [56] MAKHA M, GHAILANE A, LARHLIMI H, et al. Emerging opportunities for 2D-black phosphorus as a carrier transporting material in perovskite solar cells[J]. Materials Letters, 2020, 276: 128234.
[57] [57] SONG T, HOU L Q, LONG B, et al. Ultrathin MXene “bridge” to accelerate charge transfer in ultrathin metal-free 0D/2D black phosphorus/g-C3N4 heterojunction toward photocatalytic hydrogen production[J]. Journal of Colloid and Interface Science, 2021, 584: 474-483.
[58] [58] ZHENG Y, CHEN Y L, WANG L, et al. Metal-free 2D/2D heterostructured photocatalyst of black phosphorus/covalent triazine-based frameworks for water splitting and pollutant degradation[J]. Sustainable Energy & Fuels, 2020, 4(7): 3739-3746.
[59] [59] WANG Q, LI B H, ZHANG P, et al. 2D black phosphorus and tungsten trioxide heterojunction for enhancing photocatalytic performance in visible light[J]. RSC Advances, 2020, 10(46): 27538-27551.
[60] [60] LI X Y, XIAO L P, ZHOU L, et al. Adaptive bifunctional electrocatalyst of amorphous CoFe oxide @ 2D black phosphorus for overall water splitting[J]. Angewandte Chemie (International Ed in English), 2020, 59(47): 21106-21113.
[61] [61] LANG J Y, HU Y H. Phosphorus-based metal-free Z-scheme 2D van der Waals heterostructures for visible-light photocatalytic water splitting: a first-principles study[J]. Physical Chemistry Chemical Physics, 2020, 22(17): 9250-9256.
[62] [62] CHENG L, CAI Z W, ZHAO J W, et al. Black phosphorus-based 2D materials for bone therapy[J]. Bioactive Materials, 2020, 5(4): 1026-1043.
[63] [63] PIZZI G, GIBERTINI M, DIB E, et al. Performance of arsenene and antimonene double-gate MOSFETs from first principles[J]. Nature Communications, 2016, 7: 12585.
[64] [64] WANG Y Y, HUANG P, YE M, et al. Many-body effect, carrier mobility, and device performance of hexagonal arsenene and antimonene[J]. Chemistry of Materials, 2017, 29(5): 2191-2201.
[65] [65] MARTNEZ-PERIN E, DOWN M P, GIBAJA C, et al. Antimonene: a novel 2D nanomaterial for supercapacitor applications[J]. Advanced Energy Materials, 2018, 8(11): 1702606.
[66] [66] MENG R S, CAI M, JIANG J K, et al. First principles investigation of small molecules adsorption on antimonene[J]. IEEE Electron Device Letters, 2017, 38(1): 134-137.
[67] [67] REIS F, LI G, DUDY L, et al. Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin Hall material[J]. Science, 2017, 357(6348): 287-290.
Get Citation
Copy Citation Text
LIU Qichao, ZHANG Hui. Research Progress of Low-Dimensional Group-VA Nanomaterials: from Structural Properties to Preparation Applications[J]. Journal of Synthetic Crystals, 2021, 50(3): 578
Category:
Received: Dec. 16, 2020
Accepted: --
Published Online: Apr. 15, 2021
The Author Email: Qichao LIU (893241301@qq.com)
CSTR:32186.14.