Frontiers of Optoelectronics, Volume. 13, Issue 4, -1(2020)

Super-resolution imaging of the dynamic cleavage of intercellular tunneling nanotubes

Wanjun GONG, Wenhui PAN, Ying HE, Meina HUANG, Jianguo ZHANG, Zhenyu GU, Dan ZHANG, Zhigang YANG*, and Junle QU
Author Affiliations
  • Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • show less
    References(28)

    [1] [1] Sattentau Q. Avoiding the void: cell-to-cell spread of human viruses. Nature Reviews Microbiology, 2008, 6(11): 815-826

    [2] [2] Sherer N M, Lehmann M J, Jimenez-Soto L F, Horensavitz C, Pypaert M, Mothes W. Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nature Cell Biology, 2007, 9 (3): 310-315

    [3] [3] Rustom A, Saffrich R, Markovic I, Walther P, Gerdes H H. Nanotubular highways for intercellular organelle transport. Science, 2004, 303(5660): 1007-1010

    [4] [4] Wang X, Veruki M L, Bukoreshtliev N V, Hartveit E, Gerdes H H. Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(40): 17194-17199

    [5] [5] Hase K, Kimura S, Takatsu H, Ohmae M, Kawano S, Kitamura H, Ito M, Watarai H, Hazelett C C, Yeaman C, Ohno H. M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nature Cell Biology, 2009, 11(12): 1427- 1432

    [6] [6] Zhu D, Tan K S, Zhang X, Sun A Y, Sun G Y, Lee J C. Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. Journal of Cell Science, 2005, 118(16): 3695-3703

    [7] [7] Wang X, Bukoreshtliev N V, Gerdes H H. Developing neurons form transient nanotubes facilitating electrical coupling and calcium signaling with distant astrocytes. PLoS One, 2012, 7(10): e47429

    [8] [8] ?nfelt B, Nedvetzki S, Benninger R K P, PurbhooMA, Sowinski S, Hume A N, Seabra M C, Neil M A A, French P M W, Davis D M. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. Journal of Immunology (Baltimore, Md.: 1950), 2006, 177(12): 8476-8483

    [9] [9] selenyák A, Pankotai E, Horváth E M, Kiss L, Lacza Z. Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biology, 2010, 11(1): 29

    [10] [10] Naphade S, Sharma J, Gaide Chevronnay H P, ShookMA, Yeagy B A, Rocca C J, Ur S N, Lau A J, Courtoy P J, Cherqui S. Brief reports: lysosomal cross-correction by hematopoietic stem cellderived macrophages via tunneling nanotubes. Stem Cells (Dayton, Ohio), 2015, 33(1): 301-309

    [11] [11] Wang X, Gerdes H H. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death and Differentiation, 2015, 22(7): 1181-1191

    [12] [12] Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, Weil S, Horstmann H, Wiestler B, Syed M, Huang L, Ratliff M, Karimian Jazi K, Kurz F T, Schmenger T, Lemke D, G?mmel M, Pauli M, Liao Y, H?ring P, Pusch S, Herl V, Steinh?user C, Krunic D, Jarahian M, Miletic H, Berghoff A S, Griesbeck O, Kalamakis G, Garaschuk O, Preusser M, Weiss S, Liu H, Heiland S, Platten M, Huber P E, Kuner T, von Deimling A, Wick W, Winkler F. Brain tumour cells interconnect to a functional and resistant network. Nature, 2015, 528(7580): 93-98

    [13] [13] Chauveau A, Aucher A, Eissmann P, Vivier E, Davis D M. Membrane nanotubes facilitate long-distance interactions between natural killer cells and target cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107 (12): 5545-5550

    [14] [14] Lou E, Fujisawa S, Morozov A, Barlas A, Romin Y, Dogan Y, Gholami S, Moreira A L, Manova-Todorova K, Moore M A. Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS One, 2012, 7(3): e33093

    [15] [15] Austefjord M W, Gerdes H H, Wang X. Tunneling nanotubes: diversity in morphology and structure. Communicative & Integrative Biology, 2014, 7(1): e27934

    [16] [16] Dubois F, Jean-Jacques B, Roberge H, Bénard M, Galas L, Schapman D, Elie N, Goux D, Keller M, Maille E, Bergot E, Zalcman G, Levallet G. A role for RASSF1A in tunneling nanotube formation between cells through GEFH1/Rab11 pathway control. Cell Communication and Signaling, 2018, 16(1): 66

    [17] [17] Sun X, Wang Y, Zhang J, Tu J, Wang X J, Su X D, Wang L, Zhang Y. Tunneling-nanotube direction determination in neurons and astrocytes. Cell Death & Disease, 2012, 3(12): e438

    [18] [18] Tang B L. Unconventional secretion and intercellular transfer of mutant huntingtin. Cells, 2018, 7(6): 59

    [19] [19] Weng Z, Zhang B, Tsilioni I, Theoharides T C. Nanotube formation: a rapid form of “alarm signaling”? Clinical Therapeutics, 2016, 38 (5): 1066-1072

    [20] [20] Omsland M, Pise-Masison C, Fujikawa D, Galli V, Fenizia C, Parks R W, Gjertsen B T, Franchini G, Andresen V. Inhibition of tunneling nanotube (TNT) formation and human T-cell leukemia virus type 1 (HTLV-1) transmission by cytarabine. Scientific Reports, 2018, 8(1): 11118

    [21] [21] Delage E, Cervantes D C, Pénard E, Schmitt C, Syan S, Disanza A, Scita G, Zurzolo C. Differential identity of filopodia and tunneling nanotubes revealed by the opposite functions of actin regulatory complexes. Scientific Reports, 2016, 6(1): 39632

    [22] [22] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 2006, 3(10): 793-796

    [23] [23] Bates M, Huang B, Dempsey G T, Zhuang X. Multicolor superresolution imaging with photo-switchable fluorescent probes. Science, 2007, 317(5845): 1749-1753

    [24] [24] Huang B, Wang W, Bates M, Zhuang X. Three-dimensional superresolution imaging by stochastic optical reconstruction microscopy. Science, 2008, 319(5864): 810-813

    [25] [25] Wang B, Fan J, Sun S, Wang L, Song B, Peng X. 1- (Carbamoylmethyl)-3H-indolium squaraine dyes: synthesis, spectra, photo-stability and association with BSA. Dyes and Pigments, 2010, 85(1-2): 43-50

    [26] [26] Roberts R M, Edwards M B. Acetoacetic ester-type cleavage by aniline1. Journal of the American Chemical Society, 1950, 72(12): 5537-5539

    [27] [27] Loeber D E, Russell S W, Toube T P, Weedon B C L, Diment J. Carotenoids and related compounds. Part XXVIII. Synthesis of zeaxanthin, -cryptoxanthin, and zeinoxanthin (-cryptoxanthin). Journal of the Chemical Society C: Organic, 1971, 404-408

    [28] [28] Min J, Vonesch C, Kirshner H, Carlini L, Olivier N, Holden S, Manley S, Ye J C, Unser M. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data. Scientific Reports, 2014, 4(1): 4577

    Tools

    Get Citation

    Copy Citation Text

    Wanjun GONG, Wenhui PAN, Ying HE, Meina HUANG, Jianguo ZHANG, Zhenyu GU, Dan ZHANG, Zhigang YANG, Junle QU. Super-resolution imaging of the dynamic cleavage of intercellular tunneling nanotubes[J]. Frontiers of Optoelectronics, 2020, 13(4): -1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH ARTICLE

    Received: Jul. 18, 2020

    Accepted: Sep. 11, 2020

    Published Online: May. 14, 2021

    The Author Email: Zhigang YANG (zhgyang@szu.edu.cn)

    DOI:10.1007/s12200-020-1068-1

    Topics