Laser & Optoelectronics Progress, Volume. 60, Issue 12, 1210017(2023)

Super-Resolution Reconstruction Algorithm of Underwater Image Based on Information Distillation Mechanism

Hongchun Yuan, Lingdong Kong*, Shanshan Zhang, Kai Gao, and Yurui Yang
Author Affiliations
  • School of Information, Shanghai Ocean University, Shanghai 201306, China
  • show less
    Figures & Tables(16)
    Schematic diagram of residual network structure based on information distillation mechanism
    Residual feature distillation block
    Spatial attention module
    Training loss
    Results of ablation experiments on GFF and SA (validation set)
    Visualization of SA
    Distilled feature maps from different stages (part)
    Comparison of visual results (RPSNR and MSSIM) of im_xb_660_ from USR-248 dataset among different algorithms (×2)
    Comparison of visual results (RPSNR and MSSIM) of im_xb_5341_ from USR-248 dataset among different algorithms (×4)
    Comparison of visual results (RPSNR and MSSIM) of im_xb_331_ from USR-248 dataset among different algorithms (×8)
    SR result generated with SRIDM in real underwater scenes
    Comparison of parameters, floating-operations, and running time of different algorithms
    • Table 1. Results of ablation experiments on GFF and SA (test set)

      View table

      Table 1. Results of ablation experiments on GFF and SA (test set)

      ScaleBaseGFFSARPSNR /dBMSSIM
      ×4××27.56290.7142
      ×27.56600.7143
      ×27.56900.7146
      27.58510.7150
    • Table 2. [in Chinese]

      View table

      Table 2. [in Chinese]

      dRPSNR /dBMSSIM
      0.2527.76400.7640
      0.527.75660.7635
      0.7527.74800.7631
    • Table 3. Comparison of average RPSNR and MSSIM by different super-resolution algorithms on test datasets

      View table

      Table 3. Comparison of average RPSNR and MSSIM by different super-resolution algorithms on test datasets

      AlgorithmScaleParams /103FLOPs /109RPSNR /dBMSSIM
      Bicubic×232.54890.9083
      SRCNN×283.132.73910.9097
      DSRCNN×22972896.033.58310.9186
      EDSR×2107492.033.62450.9189
      RCAN×21192101.633.62070.9191
      CARN×296492.733.67210.9193
      IMDN×269462.233.68100.9194
      SRIDM×266860.133.69830.9198
      Bicubic×426.77020.7432
      SRCNN×483.127.15370.7402
      DSRCNN×42972896.027.65120.7572
      EDSR×4122236.027.70670.7628
      RCAN×4134038.427.70030.7626
      CARN×4111236.227.74260.7634
      IMDN×471516.027.73360.7637
      SRIDM×468915.527.76400.7640
      Bicubic×823.57570.6080
      SRCNN×883.124.10150.6043
      DSRCNN×82972896.024.41170.6211
      EDSR×8137022.124.48360.6304
      RCAN×8148722.724.48140.6295
      CARN×8126022.124.50040.6310
      IMDN×87984.424.49070.6303
      SRIDM×87724.324.50180.6304
    • Table 4. Number of params, FLOPs, run-time, and memory requirement of SRIDM on RTX 3090

      View table

      Table 4. Number of params, FLOPs, run-time, and memory requirement of SRIDM on RTX 3090

      Model×2×4×8
      Params /103668689772
      FLOPs /10960.1515.484.31
      Run-time /ms3.853.733.59
      Frames per second259.74268.10278.55
      Model_size /MB2.62.73.0
    Tools

    Get Citation

    Copy Citation Text

    Hongchun Yuan, Lingdong Kong, Shanshan Zhang, Kai Gao, Yurui Yang. Super-Resolution Reconstruction Algorithm of Underwater Image Based on Information Distillation Mechanism[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210017

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Apr. 18, 2022

    Accepted: Jun. 28, 2022

    Published Online: Jun. 5, 2023

    The Author Email: Lingdong Kong (2067718653@qq.com)

    DOI:10.3788/LOP221324

    Topics