Remote Sensing Technology and Application, Volume. 40, Issue 4, 886(2025)
Research Progress on CDOM Remote Sensing Inversion Considering Water Body Type and Regional Characteristics
[1] [1] Al-Kharusi,HENSGENSG,ABDIA M,et al. Drought offsets the controls on colored dissolved organic matter in lakes[J].Remote Sensing,2024,16(8):1345. DOI:10.3390/rs 16081345
[2] [2] ZHANGY L, ZHOUL, ZHOUY Q, et al. Chromophoric dissolved organic matter in inland waters: Present knowledge and future challenges[J]. Science of the Total Environment, 2021, 759: 143550. DOI: 10.1016/j.scitotenv.2020.143550
[3] [3] MURPHYK R, STEDMONC A, WAITET D, et al. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy[J]. Marine Chemistry,2008,108(1/2):40-58. DOI:10. 1016/j.marchem.2007.10.003
[4] [4] AHONENS A,JONESR I,SEPPÄLÄJ, et al. Phytoplankton absorb mainly red light in lakes with high chromophoric dissolved organic matter[J].LIMNOLOGY AND OCEANOGRAPGY,2025,9999:1-16DOI:10.1002/lno.70034
[5] [5] MENENDEZA, TZORTZIOUM. Driving factors of colored dissolved organic matter dynamics across a complex urbanized estuary[J].Science of The Total Environment,2024,921: 171083. DOI: 10.1016/j.scitotenv.2024.171083
[6] [6] MenendezA,TzortziouM,Augmenting estuary monitoring from space:New retrievals of fine-scale CDOM quality and DOC exchange[J].International Journal of Applied Earth Observation and Geoinformation,2025,137:104389.DOI:10.1016/j.jag. 2025.104389.
[7] [7] MESFIOUIR, ABDULLAH A N, HATCHERP G. Photochemical alterations of natural and anthropogenic dissolved organic Nitrogen in the York River[J]. Environmental Science & Technology,2015,49(1):159-167. DOI:10.1021/es 504095c
[8] [8] CHENL,LIUL, LIUS,et al. The application of remote sensing technology in inland water quality monitoring and water environment science: Recent progress and perspectives[J]. Remote Sens, 2025, 17:667.DOI:10.3390/rs17040667.
[9] [9] ZHOUY Q,ZHANGY L,SHIK,et al.Lake Taihu, a large, shallow and eutrophic aquatic ecosystem in China serves as a sink for chromophoric dissolved organic matter[J]. Journal of Great Lakes Research,2015,41(2):597-606. DOI: 10.1016/j.jglr.2015.03.027
[10] [10] COBLEP G. Marine optical biogeochemistry: The chemistry of ocean color[J]. ChemInform,2007,38(20):402-418. DOI:10.1002/chin.200720265
[11] [11] KOWALCZUKP, COOPERW J, DURAKOM J, et al. Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: Relationships between fluorescence and its components, absorption coefficients and organic carbon concentrations[J]. Marine Chemistry,2010,118(1/2):22-36. DOI:10.1016/j.marchem. 2009.10.002
[12] [12] TRANVIKL J, DOWNINGJ A, COTNERJ B, et al. Lakes and reservoirs as regulators of carbon cycling and climate[J]. Limnology and Oceanography, 2009, 54(6part2): 2298-2314. DOI: 10.4319/lo.2009.54.6_part_2.2298
[13] [13] HUGUETA, VACHERL, RELEXANSS, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 2009, 40(6): 706-719. DOI: 10.1016/j.orggeochem.2009.03.002
[14] [14] FERRARIG M, TASSANS. Evaluation of yellow substance absorption on the remote sensing of water quality in the gulf of naples:A case study[J]. International Journal of Remote Sensing,1992, 13(12): 2177-2189. DOI: 10.1080/01431169208904261
[15] [15] KARABASHEVG S,KHANAEVS A,KULESHOVA F. On the variability of yellow substance in the Skagerrak and the Kattegat[J]. Oceanologica Acta, 1993, 16(2): 115-125.
[16] [16] EVANSC D, MONTEITHD T, COOPERD M. Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts[J]. Environmental Pollution, 2005, 137(1): 55-71. DOI: 10.1016/j.envpol.2004.12.031
[17] [17] HÄDERD P, KUMARH D, SMITHR C, et al. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change[J]. Photochemical & Photobiological Sciences, 2007, 6(3): 267-285. DOI: 10.1039/b700020k
[18] [18] BERGAMASCHIB A,FLECKJ A,DOWNINGB D,et al. Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements[J].Limnology and Oceanography,2011, 56(4): 1355-1371. DOI:10.4319/lo.2011.56.4.1355
[19] [19] VINCENTR K, QINX M, MCKAYR M L, et al. Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie[J]. Remote Sensing of Environment,2004,89(3):381-392. DOI:10.1016/j.rse. 2003. 10.014
[20] [20] CAOF, MEDEIROSP M, MILLERW L. Optical characterization of dissolved organic matter in the Amazon River plume and the Adjacent Ocean: Examining the relative role of mixing, photochemistry, and microbial alterations[J]. Marine Chemistry,2016,186:178-188. DOI:10.1016/j.marchem. 2016.09.007
[21] [21] CHENH, MENGW, ZHENGB H, et al. Optical signatures of dissolved organic matter in the watershed of a globally large river (Yangtze River,China)[J]. Limnologica, 2013, 43(6): 482-491. DOI: 10.1016/j.limno.2013.04.004
[22] [22] DITTMART, HERTKORNN, KATTNERG, et al. Mangroves, a major source of dissolved organic carbon to the oceans[J].Global Biogeochemical Cycles,2006,20(1): GB1012. DOI: 10.1029/2005GB002570
[23] [23] DUBOISK D, LEED, VEIZERJ. Isotopic constraints on alkalinity, dissolved organic carbon, and atmospheric carbon dioxide fluxes in the Mississippi River[J].Journal of Geophysical Research:Biogeosciences,2010,115:G02018. DOI:10. 1029/2009JG001102
[24] [24] GUOL D, COLEMANC H, SANTSCHIP H. The distribution of colloidal and dissolved organic carbon in the gulf of Mexico[J]. Marine Chemistry,1994,45(1/2):105-119. DOI: 10.1016/0304-4203(94)90095-7
[25] [25] GUOL D, TANAKAT, WANGD L, et al. Distributions, speciation and stable isotope composition of organic matter in the southeastern Bering Sea[J]. Marine Chemistry, 2004, 91(1/2/3/4): 211-226. DOI: 10.1016/j.marchem.2004.07.002
[26] [26] HUNGJ J, LINP L, LIUK K. Dissolved and particulate organic carbon in the southern East China Sea[J]. Continental Shelf Research, 2000, 20(4/5): 545-569. DOI: 10.1016/S0278-4343(99)00085-0
[27] [27] HUNGJ J, WANGS M, CHENY L. Biogeochemical controls on distributions and fluxes of dissolved and particulate organic carbon in the Northern South China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(14/15): 1486-1503. DOI: 10.1016/j.dsr2.2007.05.006
[28] [28] SANTINELLIC, NANNICINIL, SERITTIA. DOC dynamics in the meso and bathypelagic layers of the Mediterranean Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(16): 1446-1459. DOI: 10.1016/j.dsr2.2010.02.014
[29] [29] SEIDELM, DITTMART, WARDN D, et al. Seasonal and spatial variability of dissolved organic matter composition in the lower Amazon River[J]. Biogeochemistry, 2016, 131(3): 281-302. DOI: 10.1007/s10533-016-0279-4
[30] [30] THOMASC, CAUWETG, MINSTERJ F. Dissolved organic carbon in the equatorial Atlantic Ocean[J]. Marine Chemistry, 1995, 49(2/3): 155-169. DOI: 10.1016/0304-4203(94)00061-H
[31] [31] TRIGGS, FLASSES. Characterizing the spectral-temporal response of burned savannah using in situ spectroradiometry and infrared thermometry[J]. International Journal of Remote Sensing,2000,21(16):3161-3168. DOI:10.1080/014311600 50145045
[32] [32] WANGD L, HENRICHSS M, GUOL D. Distributions of nutrients, dissolved organic carbon and carbohydrates in the western Arctic Ocean[J]. Continental Shelf Research, 2006, 26(14): 1654-1667. DOI: 10.1016/j.csr.2006.05.001
[33] [33] SONGK S,WENZ D,SHANGY X, et al. Quantification of Dissolved Organic Carbon(DOC) storage in lakes and reservoirs of mainland China[J].Journal of Environmental Management,2018,217:391-402. DOI:10.1016/j.jenvman. 2018. 03.121
[34] [34] LISijia, SONGKaishan, ZHAOYing, et al. Absorption characteristics of particulates and CDOM in waters of Chagan Lake and Xinlicheng reservoir in autumn[J]. Environmental Science, 2016, 37(1): 112-122.
[35] [35] WUMing,HUANGJue,GONGLijiao,et al.Analysis of DOC concentration variation and driving forces in the Arctic River Lena based on long-term Landsat time series[J]. National Remote Sensing Bulletin, 2021, 25(3): 830-845.
[36] [36] RANL S, LUX X, SUNH G, et al. Spatial and seasonal variability of organic carbon transport in the Yellow River, China[J]. Journal of Hydrology, 2013, 498: 76-88. DOI: 10.1016/j.jhydrol.2013.06.018
[37] [37] PIENITZR, VINCENTW F. Effect of climate change relative to ozone depletion on UV exposure in subarctic lakes[J]. Nature,2000,404(6777):484-487. DOI:10.1038/35006616
[38] [38] LIZhengmao, HUANGJue, ZHANGKe. Remote sensing monitoring of colored dissolved organic matter and dissolved organic carbon in the Arctic Ocean[J]. Advances in Marine Science, 2023, 41(1): 148-156.
[39] [39] LILiuyang. Spatio-temporal distribution and influencing factors analysis of CDOM in Eutrophic Lakes[D].Kaifeng: Henan University, 2019.
[40] [40] SONGKaishan, WENZhidan, LIUGe, et al. The research progress of CDOM optical characteristics and remote sensing retrieval for inland waters[J]. Jilin Normal University Journal (Natural Science Edition), 2018, 39(4): 115-125.
[41] [41] ZHANGYunlin. Advances in chromophoric dissolved organic matter in aquatic ecosystems[J]. Transactions of Oceanology and Limnology, 2006, 28(3): 119-127.
[42] [42] DEL CASTILLOC E, GILBESF, COBLEP G, et al. On the dispersal of riverine colored dissolved organic matter over the West Florida Shelf[J]. Limnology and Oceanography, 2000, 45(6): 1425-1432. DOI: 10.4319/lo.2000.45.6.1425
[43] [43] GREENS A, BLOUGHN V. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters[J].Limnology and Oceanography,1994,39(8):1903-1916. DOI:10.4319/lo.1994.39.8.1903
[44] [44] GUOW D, STEDMONC A, HANY C, et al. The conservative and non-conservative behavior of chromophoric dissolved organic matter in Chinese estuarine waters[J]. Marine Chemistry,2007,107(3):357-366. DOI:10.1016/j.marchem. 2007.03.006
[45] [45] NIEKEB, REUTERR, HEUERMANNR, et al. Light absorption and fluorescence properties of Chromophoric Dissolved Organic Matter(CDOM), in the St. Lawrence Estuary (Case 2 waters)[J].Continental Shelf Research,1997,17(3): 235-252. DOI: 10.1016/S0278-4343(96)00034-9
[46] [46] SASAKIH, MIYAMURAT, SAITOHS I, et al. Seasonal variation of absorption by particles and Colored Dissolved Organic Matter (CDOM) in Funka Bay, southwestern Hokkaido, Japan[J]. Estuarine, Coastal and Shelf Science, 2005, 64(2/3): 447-458. DOI: 10.1016/j.ecss.2005.03.008
[47] [47] SIDDORNJ R, BOWERSD G, HOGUANEA M. Detecting the Zambezi River plume using observed optical properties[J]. Marine Pollution Bulletin,2001,42(10):942-950. DOI: 10.1016/S0025-326X(01)00053-4
[48] [48] STEDMONC A, AMONR M W, RINEHARTA J, et al. The supply and characteristics of Colored Dissolved Organic Matter (CDOM) in the Arctic Ocean: Pan Arctic trends and differences[J]. Marine Chemistry, 2011, 124(1/2/3/4): 108-118. DOI: 10.1016/j.marchem.2010.12.007
[49] [49] ASMALAE, PAERLR W,OsburnC L, et al. Optical transformation of riverine colored dissolved organic matter during salt-induced flocculation[J]. Biogeochemistry ,2025,168, 47. DOI:10.1007/s10533-025-01237-4
[50] [50] HUANGMiaofen, WANGDifeng, XINGXufeng, et al. The research on remote sensing mode of retrieving ag(440)in Zhujiang River Estuary and its application[J]. Acta Oceanologica Sinica, 2015, 37(7): 67-77.
[51] [51] HUANGMiaofen, WANGZhonglin, XINGXufeng, et al. Remote sensing analysis of the distribution characteristics of CDOM and COD in Northern Chu island waters off Weihai, Shandong Province[J]. Journal of Ocean Technology, 2018, 37(2): 63-70.
[52] [52] LIAiming, XIAGuangping, QIXin, et al. The retrieval method for water quality CDOM parameter of Tiande Lake in Zhengzhou based on hyperspectral remote sensing of Zhuhai-1[J].Journal of Geomatics Science and Technology,2020,37(4):388-91,97
[53] [53] PIAODewei,WANGFengkun, Envionmental conditions and the protecton measures for waters of Lake Xingkai [J]. Journal of Lake Science, 2011, 23(2):196-202.
[54] [54] YUGuo, FUDongyang, ZHONGYafeng, et al. Remote sensing retrieval of colored dissolved organic matter in Zhanjiang Coastal Area[J]. Journal of Guangdong Ocean University, 2021, 41(1): 55-62.
[55] [55] ZHOUYaming,LIJunsheng,SHENQian,et al.Retrieving chromophoric dissolved organic matter in Guanting Reservoir based on in situ measured reflectance data[J].Spectroscopy and Spectral Analysis,2015,35(4):1015-1019.
[56] [56] KOWALCZUKP, STEDMONC A, MARKAGERS. Modeling absorption by CDOM in the Baltic Sea from season, salinity and chlorophyll[J]. Marine Chemistry, 2006, 101(1/2): 1-11. DOI: 10.1016/j.marchem.2005.12.005
[57] [57] MIAOS, LYU H, WANGQ, et al. Estimation of terrestrial humic-like substances in inland lakes based on the optical and fluorescence characteristics of Chromophoric Dissolved Organic Matter (CDOM) using OLCI images[J]. Ecological Indicators,2019,101:399-409. DOI:10.1016/j.ecolind.2019.01.039
[58] [58] SHANGYingxin. Characterization of optical properties and remote sensing retrieval of CDOM in typical reservoirs across China[D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2020.
[59] [59] LiR, MishraD R,ChenX, et al. Large River overrides tidal marsh Outwelling in spatial gradients of dissolved organic carbon: observations across yangtze estuary-coastal marsh complex[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 10026-10041. DOI: 10.1109/JSTARS.2025.3543417.
[60] [60] HEWei, BAIZelin, LIYilong, et al. Advances in the characteristics analysis and source identification of the dissolved organic matter[J]. Acta Scientiae Circumstantiae, 2016, 36(2): 359-372.
[61] [61] WUZhiming, LIJianchao, WANGRui, et al. Estimation of CDOM concentration in inland lake based on random forest using Sentinel-3A OLCI[J]. Journal of Lake Sciences, 2018, 30(4): 979-991.
[62] [62] KUTSERT, PIERSOND C, KALLIOK Y, et al. Mapping lake CDOM by satellite remote sensing[J]. Remote Sensing of Environment, 2005, 94(4): 535-540. DOI: 10.1016/j.rse.2004.11.009
[63] [63] SLONECKERE T,JONESD K,PELLERINB A. The new Landsat 8 potential for remote sensing of Colored Dissolved Organic Matter(CDOM)[J]. Marine Pollution Bulletin,2016,107(2): 518-527. DOI: 10.1016/j.marpolbul.2016.02.076
[64] [64] DVORNIKOVY, LEIBMANM, HEIMB, et al. Terrestrial CDOM in Lakes of Yamal Peninsula: Connection to lake and lake catchment properties[J]. Remote Sensing, 2018, 10(2): 167. DOI: 10.3390/rs10020167
[65] [65] LINGZ B, SUND Y, WANGS Q, et al. Remote sensing estimation of Colored Dissolved Organic Matter (CDOM) from GOCI measurements in the Bohai Sea and Yellow Sea[J]. Environmental Science and Pollution Research, 2020, 27(7): 6872-6885. DOI: 10.1007/s11356-019-07435-6
[66] [66] ZHUW N, YUQ, TIANY Q. Uncertainty analysis of remote sensing of colored dissolved organic matter: Evaluations and comparisons for Three rivers in North America[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 84: 12-22. DOI: 10.1016/j.isprsjprs.2013.07.005
[67] [67] LIJ W, YUQ, TIANY Q, et al. Spatio-temporal variations of CDOM in shallow inland waters from a semi-analytical inversion of Landsat-8[J]. Remote Sensing of Environment, 2018, 218: 189-200. DOI: 10.1016/j.rse.2018.09.014
[68] [68] LIJ W, YUQ, TIANY Q, et al. Remote sensing estimation of Colored Dissolved Organic Matter (CDOM) in optically shallow waters[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2017,128:98-110. DOI:10.1016/j.isprsjprs. 2017. 03.015
[69] [69] FENGLongqing, SHIZhiqiang, PANJianjun, et al. Characteristics of spectral absorption, fluorescence and remote sensing algorithms of chromophoric dissolved organic matter in winter, Lake Taihu[J]. Journal of Lake Sciences, 2011, 23(3): 348-356.
[70] [70] LIUG, LIS J, SONGK S, et al. Remote sensing of CDOM and DOC in Alpine lakes across the Qinghai-Tibet Plateau using Sentinel-2A imagery data[J]. Journal of Environmental Management, 2021, 286: 112231. DOI: 10.1016/j.jenvman.2021.112231
[71] [71] XUJ, FANGC Y, GAOD, et al. Optical models for remote sensing of Chromophoric Dissolved Organic Matter(CDOM) absorption in Poyang Lake[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2018,142:124-136. DOI:10. 1016/j.isprsjprs.2018.06.004
[72] [72] SHANGY X, LIUG, WENZ D, et al. Remote estimates of CDOM using Sentinel-2 remote sensing data in reservoirs with different trophic states across China[J]. Journal of Environmental Management, 2021, 286: 112275. DOI: 10.1016/j.jenvman.2021.112275
[73] [73] DE STEFANOL G,VALDIVIAA S,GIANELLOD,et al. Using CDOM spectral shape information to improve the estima-tion of DOC concentration in inland waters:A case study of An-dean Patagonian Lakes[J].Science of the Total Environment,2022,824:153752. DOI:10.1016/j.scitotenv. 2022. 153752
[74] [74] CHENY L, ARNOLDW A, GRIFFINC G, et al. Assessment of the chlorine demand and disinfection byproduct formation potential of surface waters via satellite remote sensing[J]. Water Research,2019,165:115001. DOI:10.1016/j.watres. 2019.115001
[75] [75] ZHANGBo, ZHANGBo, HONGMei, et al. Advance in remote sensing of lake water quality[J]. Advances in Water Science,2007,18(2):301-310.
[76] [76] ZHAOJ, CAOW X, XUZ T, et al. Estimating CDOM concentration in highly turbid estuarine coastal waters[J]. Journal of Geophysical Research:Oceans,2018,123(8): 5856-5873. DOI: 10.1029/2018JC013756
[77] [77] LIUD, BAIY, HEX Q, et al. The dynamic observation of dissolved organic matter in the Zhujiang (Pearl River) Estuary in China from space[J]. Acta Oceanologica Sinica, 2018, 37(7): 105-117. DOI: 10.1007/s13131-017-1248-7
[78] [78] ZHUW N, YUQ. Inversion of chromophoric dissolved organic matter from EO-1 hyperion imagery for turbid estuarine and coastal waters[J]. IEEE Transactions on Geoscience and Remote Sensing,2013,51(6): 3286-3298. DOI: 10.1109/TGRS.2012.2224117
[79] [79] MOHD-SHAZALIS M, MADIHAHJ S, ALI N, et al. Dynamics of absorption properties of CDOM and its composition in Likas estuary, North Borneo, Malaysia[J]. Oceanologia, 2022, 64(4): 583-594. DOI: 10.1016/j.oceano.2022.04.005
[80] [80] PACEM L, COLEJ J. Synchronous variation of dissolved organic carbon and color in lakes[J]. Limnology and Oceanography,2002,47(2):333-342. DOI:10.4319/lo.2002.47.2.0333
[81] [81] NELSONN B, SIEGELD A. The global distribution and dynamics of chromophoric dissolved organic matter[J].Annual Review of Marine Science,2013,5:447-476. DOI: 10.1146/annurev-marine-120710-100751
[82] [82] ZHANGYunlin, QINBoqiang. Feature of CDOM and its possible source in Meiliang bay and Da Taihu lake in Taihu lake in summer and winter[J]. Advances in Water Science, 2007, 18(3): 415-423.
[83] [83] MARonghua, DAIJinfang, ZHANGYunlin. Influence factors and slope coefficients of spectral absorption of Coloured Dissolved Or Ganic Matter(CDOM)in East Taihu Lake,China[J]. Journal of Lake Science, 2005,17(2):120-6.
[84] [84] LEChengfeng, LIYunmei, ZHAYong, et al. Seasonal variation of in water constituents' absorption properties in Meiliang Bay of Taihu Lake[J]. Environmental Science, 2008, 29(9): 2448-2455.
[85] [85] JIANGGuangjia, MARonghua, DUANHongtao. Estimation of the contribution of Chromophoric Dissolved Organic Matter to total light absorption by remote sensing in Lake Taihu[J]. Journal of Lake Sciences, 2012, 24(6): 914-922.
[86] [86] FANGKaikai, HUANGTinglin, ZHANGChunhua, et al. Summer absorption characteristics, spatial distribution and source analysis of CDOM in Zhoucun Reservoir in Huaihe Catchment[J]. Journal of Lake Sciences, 2017, 29(1): 151-159.
[87] [87] GRANSKOGM A, STEDMONC A, DODDP A, et al. Characteristics of Colored Dissolved Organic Matter (CDOM) in the Arctic outflow in the Fram Strait: Assessing the changes and fate of terrigenous CDOM in the Arctic Ocean[J].Journal of Geophysical Research:Oceans,2012,117(C12). DOI: 10.1029/2012JC008075
[88] [88] HARVEYE T, KRATZERS, ANDERSSONA. Relationships between colored dissolved organic matter and dissolved organic carbon in different coastal gradients of the Baltic Sea[J]. Ambio, 2015, 44(3): 392-401. DOI: 10.1007/s13280-015-0658-4
[89] [89] LiuZhonghua, LIYunmei, LUHeng, et al. Analysis of inherent optical properties of Lake Taihu in spring and its influence on the change of remote sensing reflectance[J]. Acta Ecologica Sinica, 2012, 32(2): 438-447.
[90] [90] ZHANGYunlin, FENGSheng, MARonghua, et al. Spatial variation and estimation of optically active substances in Taihu Lake in autumn of 2004[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 967-972.
[91] [91] SHANKG C, ZEPPR G, VÄHÄTALOA, et al. Photobleaching kinetics of Chromophoric Dissolved Organic Matter derived from mangrove leaf litter and floating Sargassum colonies[J]. Marine Chemistry,2010,119(1-4):162-171. DOI: 10. 1016/j.marchem.2010.01.003
[92] [92] ZHANGY L, LIUX H, OSBURNC L, et al. Photobleaching response of different sources of Chromophoric Dissolved Organic Matter exposed to natural solar radiation using absorption and excitation-emission matrix spectra[J].Plos One,2013,8(10): e77515. DOI: 10.1371/journal.pone.0077515
[93] [93] YUANX, WANGY M, JIP, et al. A global transition to flash droughts under climate change[J]. Science, 2023, 380(6641): 187-191. DOI: 10.1126/science.abn6301
[94] [94] ZHOUY Q, ZHOUJ, JEPPESENE, et al. Will enhanced turbulence in inland waters result in elevated production of autochthonous dissolved organic matter?[J]. Science of the Total Environment, 2016, 543: 405-415. DOI: 10.1016/j.scitotenv.2015.11.051
[95] [95] SUNLu, JIANGJingang, ZHUWeining. Remote sensing inversion and daily variation of CDOM based on GOCI in the Changjiang Estuary and adjacent waters[J]. Acta Oceanologica Sinica, 2017, 39(9): 133-145.
[96] [96] NELSONN B, SIEGELD A, CARLSONC A, et al. Hydrography of Chromophoric Dissolved Organic Matter in the North Atlantic[J]. Deep Sea Research Part I: Oceanographic Research Papers,2007,54(5):710-731. DOI:10.1016/j.dsr. 2007.02.006
[97] [97] STEDMONC A, OSBURNC L, KRAGHT. Tracing water mass mixing in the Baltic-North Sea transition zone using the optical properties of coloured dissolved organic matter[J]. Estuarine,Coastal and Shelf Science,2010, 87(1): 156-162. DOI: 10.1016/j.ecss.2009.12.022
[98] [98] LIUG, LIS J, SONGK S, et al. Remote sensing of CDOM and DOC in alpine lakes across the Qinghai-Tibet Plateau using Sentinel-2A imagery data[J]. Journal of Environmental Management, 2021, 286: 112231. DOI: 10.1016/j.jenvman.2021.112231
[99] [99] LID B, PANB Z, ZHENGX, et al. CDOM in the source regions of the Yangtze and Yellow Rivers, China:Optical properties, possible sources, and their relationships with environmental variables[J]. Environmental Science and Pollution Research,2020,27(26):32856-32873. DOI:10.1007/s11356- 020-09385-w
[100] [100] FERRARIG M, DOWELLM D. CDOM absorption characteristics with relation to fluorescence and salinity in coastal areas of the southern Baltic Sea[J].Estuarine,Coastal and Shelf Science,1998,47(1):91-105. DOI:10.1006/ecss. 1997.0309
[101] [101] SANTIAGOM I, FREYK E. Assessment of empirical and semi-analytical algorithms using MODIS-Aqua for representing in situ chromophoric Dissolved Organic Matter (CDOM) in the Bering, Chukchi, and Western Beaufort Seas of the Pacific Arctic Region[J]. Remote Sensing,2021,13(18):3673. DOI: 10.3390/rs13183673
[102] [102] ZHOUY Q,YAOX L,ZHANGY B,et al. Potential rainfall-intensity and pH-driven shifts in the apparent fluorescent Composition of Dissolved Organic Matter in rainwater[J]. Environmental Pollution,2017,224:638-648. DOI:10.1016/j.envpol. 2017.02.048
[103] [103] BRINKMANB M, HOZALSKIR M. Temporal variation of NOM and its effects on membrane treatment[J]. Journal AWWA,2011,103(2):98-106. DOI:10.1002/j.1551-8833.2011.tb11405.x
[104] [104] SHANGY X, SONGK S, LAIF F, et al. Remote sensing of fluorescent humification levels and its potential environmental linkages in lakes across China[J]. Water Research, 2023, 230: 119540. DOI: 10.1016/j.watres.2022.119540
[105] [105] OLMANSONL G, PAGEB P, FINLAYJ C, et al. Regional measurements and spatial/temporal analysis of CDOM in 10 000+ optically variable Minnesota lakes using Landsat 8 imagery[J]. Science of the Total Environment, 2020, 724: 138141. DOI: 10.1016/j.scitotenv.2020.138141
[106] [106] KUTSERT,HERLEVIA,KALLIOK,et al.A hyperspectral model for interpretation of passive optical remote sensing data from turbid lakes[J].Science of the Total Environment,2001,268(1/2/3):47-58. DOI:10.1016/S0048-9697(00)00682-3
[107] [107] ZHUW N, YUQ, TIANY Q, et al. Estimation of Chromophoric Dissolved Organic Matter in the Mississippi and Atchafalaya river plume regions using above-surface hyperspectral remote sensing[J]. Journal of Geophysical Research: Oceans, 2011, 116(C2): 1-22. DOI: 10.1029/2010JC006523
[108] [108] GILERSONA A,GITELSONA A,ZHOUJ,et al.Algori-thms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands[J].Optics Express,2010,18(23):24109-24125. DOI:10.1364/OE.18. 024109
[109] [109] GITELSONA. The peak near 700 nm on radiance spectra of algae and water:Relationships of its magnitude and position with chlorophyll concentration[J]. International Journal of Remote Sensing, 1992, 13(17): 3367-3373. DOI: 10.1080/01431169208904125
[110] [110] MOSESW J, GITELSONA A, PERKR L, et al. Estimation of chlorophyll-A concentration in turbid productive waters using airborne hyperspectral data[J]. Water Research, 2012, 46(4): 993-1004. DOI: 10.1016/j.watres.2011.11.068
[111] [111] TOMINGK, KUTSERT, LAASA, et al. First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery[J]. Remote Sensing, 2016, 8(8): 640. DOI: 10.3390/rs8080640
[112] [112] PAPAF, CRÉTAUXJ F, GRIPPAM, et al. Water resources in Africa under global change: Monitoring surface waters from space[J]. Surveys in Geophysics, 2023, 44(1): 43-93. DOI: 10.1007/s10712-022-09700-9
Get Citation
Copy Citation Text
Sining QIANG, Yingxin SHANG, Zhidan WEN, Ge LIU, Kaishan SONG. Research Progress on CDOM Remote Sensing Inversion Considering Water Body Type and Regional Characteristics[J]. Remote Sensing Technology and Application, 2025, 40(4): 886
Category:
Received: Jul. 8, 2024
Accepted: --
Published Online: Aug. 26, 2025
The Author Email: Yingxin SHANG (shangyingxin@iga.ac.cn)