Acta Optica Sinica, Volume. 43, Issue 2, 0206004(2023)
Indoor Visible Light Positioning Method Using ISSA-ELM Neural Network Based on Circle Chaotic Mapping
Fig. 1. Direct link transmission model of indoor visible light communication channel
Fig. 6. Relationship between RMSE and the number of neurons in the hidden layer of ELM neural network
Fig. 7. Distribution of test points and predicted results for different height receiving planes. (a) h=0 m; (b) h=0.5 m; (c) h=1.0 m; (d) h=1.5 m
Fig. 8. Distribution of positioning errors for different height receiving planes. (a) h=0 m; (b) h=0.5 m; (c) h=1.0 m; (d) h=1.5 m
Fig. 9. Distribution of test points and prediction results of eight positioning methods when the receiver height is 1.5 m. (a) Trilateral measurement method; (b) positioning method using BP neural network; (c) positioning method using BP neural network based on L-M; (d) positioning method using GA-BP neural network; (e) positioning method using SSA-BP neural network; (f) positioning method using ELM neural network; (g) positioning method using SSA-ELM neural network; (h) positioning method using ISSA-ELM neural network
Fig. 10. Cumulative distribution of positioning errors of different positioning methods when the receiver height is 1.5 m
|
|
|
|
Get Citation
Copy Citation Text
Xia Zhao, Junyi Zhang, Qianqian Long. Indoor Visible Light Positioning Method Using ISSA-ELM Neural Network Based on Circle Chaotic Mapping[J]. Acta Optica Sinica, 2023, 43(2): 0206004
Category: Fiber Optics and Optical Communications
Received: Jun. 6, 2022
Accepted: Jul. 21, 2022
Published Online: Feb. 7, 2023
The Author Email: Zhang Junyi (zhangjy@bupt.edu.cn)