Acta Optica Sinica, Volume. 43, Issue 2, 0206004(2023)

Indoor Visible Light Positioning Method Using ISSA-ELM Neural Network Based on Circle Chaotic Mapping

Xia Zhao, Junyi Zhang*, and Qianqian Long
Author Affiliations
  • School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    Figures & Tables(14)
    Direct link transmission model of indoor visible light communication channel
    Indoor visible light positioning model
    Optimization convergence curves of ISSA and SSA
    Schematic of ELM neural network structure
    Algorithm flow of ISSA-ELM
    Relationship between RMSE and the number of neurons in the hidden layer of ELM neural network
    Distribution of test points and predicted results for different height receiving planes. (a) h=0 m; (b) h=0.5 m; (c) h=1.0 m; (d) h=1.5 m
    Distribution of positioning errors for different height receiving planes. (a) h=0 m; (b) h=0.5 m; (c) h=1.0 m; (d) h=1.5 m
    Distribution of test points and prediction results of eight positioning methods when the receiver height is 1.5 m. (a) Trilateral measurement method; (b) positioning method using BP neural network; (c) positioning method using BP neural network based on L-M; (d) positioning method using GA-BP neural network; (e) positioning method using SSA-BP neural network; (f) positioning method using ELM neural network; (g) positioning method using SSA-ELM neural network; (h) positioning method using ISSA-ELM neural network
    Cumulative distribution of positioning errors of different positioning methods when the receiver height is 1.5 m
    • Table 1. Simulation parameters of indoor visible light positioning system

      View table

      Table 1. Simulation parameters of indoor visible light positioning system

      ParameterValue
      Room size(L×W×H)/(m×m×m)5×5×3
      Position of LEDixyz)/m

      LED1:(1,1,3)

      LED2:(1,4,3)

      LED3:(4,1,3)

      LED4:(4,4,3)

      Power of each LED bulb /W4
      FOV of LED /(°)90
      Half-power angles of LED Φ1/2 /(°)60
      Effective area of PD A /cm21
      Gain of optical filter Tsψ1
      Height of receiver /m0,0.5,1.0,1.5
      Data transmission rate R /(Gbit·s-11
      Ceiling reflectance ρceil0.8
      Wall reflectance ρwall0.8
      Floor reflectance ρfloor0.3
      Sparrow population number30
      Early warning value ST0.6
      Proportion of discoverers0.2
      Maximum iterations1000
    • Table 2. Maximum, minimum, and average positioning errors for different height receiving planes

      View table

      Table 2. Maximum, minimum, and average positioning errors for different height receiving planes

      Receiving plane height h /m00.51.01.5
      Maximum positioning error /cm3.503.605.3112.79
      Minimum positioning error /cm8.8654×10-35.9007×10-29.9912×10-20.3600
      Average positioning error /cm1.011.141.363.87
    • Table 3. Average positioning errors of eight positioning methods at different height receiving planes

      View table

      Table 3. Average positioning errors of eight positioning methods at different height receiving planes

      Positioning methodAverage positioning error /cm
      h=0h=0.5 mh=1.0 mh=1.5 m
      Trilateration124.24123.18125.14132.38
      BP22.8426.8344.6674.66
      BP(L-M)13.1014.1115.4618.03
      GA-BP1.661.933.127.25
      SSA-BP1.451.632.647.09
      ELM1.271.422.386.71
      SSA-ELM1.201.332.104.59
      ISSA-ELM1.011.141.363.87
    • Table 4. Training time and average positioning time of seven positioning methods based on neural network

      View table

      Table 4. Training time and average positioning time of seven positioning methods based on neural network

      Positioning methodTraining time /sAverage positioning time /s
      BP67.06200.4356
      BP(L-M)52.62230.2416
      GA-BP38.69510.0592
      SSA-BP23.58120.0157
      ELM0.07000.0071
      SSA-ELM0.04800.0038
      ISSA-ELM0.04540.0035
    Tools

    Get Citation

    Copy Citation Text

    Xia Zhao, Junyi Zhang, Qianqian Long. Indoor Visible Light Positioning Method Using ISSA-ELM Neural Network Based on Circle Chaotic Mapping[J]. Acta Optica Sinica, 2023, 43(2): 0206004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Jun. 6, 2022

    Accepted: Jul. 21, 2022

    Published Online: Feb. 7, 2023

    The Author Email: Zhang Junyi (zhangjy@bupt.edu.cn)

    DOI:10.3788/AOS0206004

    Topics