Chinese Journal of Lasers, Volume. 49, Issue 19, 1904002(2022)
Laser Absorption Spectral Tomography for Dynamical Combustion Monitoring
[1] Zhang L F, Wang F, Wei H et al. Denoising of digital filtering based on wavelength modulation spectroscopy[J]. Laser & Optoelectronics Progress, 58, 0730001(2021).
[2] Wenig M, Spichtinger N, Stohl A et al. Intercontinental transport of nitrogen oxide pollution plumes[J]. Atmospheric Chemistry and Physics, 3, 387-393(2003).
[3] de Marco A, Poncia G. A model of combustion chambers, including nitrogen oxide generation, in thermal power plants[J]. Control Engineering Practice, 7, 483-492(1999).
[4] Yang W J, Zhou J H, Liu M S et al. Combustion process and nitrogen oxides emission of Shenmu coal added with sodium acetate[J]. Energy & Fuels, 21, 2548-2554(2007).
[5] Deng Y, Tang W, Li Z H et al. Gas concentration inversion method based on calibration of direct absorption peak value[J]. Laser & Optoelectronics Progress, 58, 0330002(2021).
[6] Livebardon T, Moreau S, Gicquel L et al. Combining LES of combustion chamber and an actuator disk theory to predict combustion noise in a helicopter engine[J]. Combustion and Flame, 165, 272-287(2016).
[7] Tachibana S, Saito K, Yamamoto T et al. Experimental and numerical investigation of thermo-acoustic instability in a liquid-fuel aero-engine combustor at elevated pressure: validity of large-eddy simulation of spray combustion[J]. Combustion and Flame, 162, 2621-2637(2015).
[8] Liu Q L, Baccarella D, Lee T H. Review of combustion stabilization for hypersonic airbreathing propulsion[J]. Progress in Aerospace Sciences, 119, 100636(2020).
[9] Ren X Y, Zeng D, Wang Y et al. Temperature measurement of a turbulent buoyant ethylene diffusion flame using a dual-thermocouple technique[J]. Fire Safety Journal, 120, 103061(2021).
[10] Wang M R, Xiao Y, Han B et al. Temperature field test for aeroengine combustor with five nozzles based on gas analysis[J]. Journal of Aerospace Power, 31, 2049-2054(2016).
[11] Gilabert G, Lu G, Yan Y. Three-dimensional tomographic reconstruction of the luminosity distribution of a combustion flame[J]. IEEE Transactions on Instrumentation and Measurement, 56, 1300-1306(2007).
[12] Cheng Q, Zhang X Y, Wang Z C et al. Simultaneous measurement of three-dimensional temperature distributions and radiative properties based on radiation image processing technology in a gas-fired pilot tubular furnace[J]. Heat Transfer Engineering, 35, 770-779(2014).
[13] Haller T W, Varghese P L. Measurements of pressure broadening of N2 in the anisotropic tensor component of spontaneous Raman spectra[J]. Combustion and Flame, 224, 166-176(2021).
[14] Raffius T, Schulz C, Ottenwälder T et al. Flame-temperature, light-attenuation, and CO measurements by spontaneous Raman scattering in non-sooting diesel-like jets[J]. Combustion and Flame, 176, 104-116(2017).
[15] Bohlin A, Nordström E, Carlsson H et al. Pure rotational CARS measurements of temperature and relative O2-concentration in a low swirl turbulent premixed flame[J]. Proceedings of the Combustion Institute, 34, 3629-3636(2013).
[16] Magre P, Collin G, Pin O et al. Temperature measurements by CARS and intrusive probe in an air-hydrogen supersonic combustion[J]. International Journal of Heat and Mass Transfer, 44, 4095-4105(2001).
[17] Roy S, Gord J R, Patnaik A K. Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows[J]. Progress in Energy and Combustion Science, 36, 280-306(2010).
[18] Lednev V N, Sdvizhenskii P A, Stavertiy A Y et al. Online and in situ laser-induced breakdown spectroscopy for laser welding monitoring[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 175, 106032(2021).
[19] Iwata K, Koide H, Imamura O et al. Experimental measurement of atomic composition in sooting luminous flame by laser-induced breakdown spectroscopy[J]. Energy, 188, 115959(2019).
[20] Ma Y F, He Y, Tong Y et al. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection[J]. Optics Express, 26, 32103-32110(2018).
[21] Li C G, Dong L, Zheng C T et al. Ppbv-level ethane detection using quartz-enhanced photoacoustic spectroscopy with a continuous-wave, room temperature interband cascade laser[J]. Sensors, 18, 723(2018).
[22] Wang L, Jiang Y, Qiu R. Experimental study of combustion inhibition by trimethyl phosphate in turbulent premixed methane/air flames using OH-PLIF[J]. Fuel, 294, 120324(2021).
[23] Malbois P, Salaün E, Rossow B et al. Quantitative measurements of fuel distribution and flame structure in a lean-premixed aero-engine injection system by kerosene/OH-PLIF measurements under high-pressure conditions[J]. Proceedings of the Combustion Institute, 37, 5215-5222(2019).
[24] Xu L J, Hou G Y, Qiu S et al. Noise immune TDLAS temperature measurement through spectrum shifting by using a Mach-Zehnder interferometer[J]. IEEE Transactions on Instrumentation and Measurement, 70, 7004009(2021).
[25] Liu C, Xu L J. Laser absorption spectroscopy for combustion diagnosis in reactive flows: a review[J]. Applied Spectroscopy Reviews, 54, 1-44(2019).
[26] Hanson R K, Kuntz P A, Kruger C H. High-resolution spectroscopy of combustion gases using a tunable IR diode laser[J]. Applied Optics, 16, 2045-2048(1977).
[27] Hanson R K, Falcone P K. Temperature measurement technique for high-temperature gases using a tunable diode laser[J]. Applied Optics, 17, 2477-2480(1978).
[28] Zhou X, Jeffries J B, Hanson R K. Development of a fast temperature sensor for combustion gases using a single tunable diode laser[J]. Applied Physics B, 81, 711-722(2005).
[29] Xu L J, Liu C, Jing W Y et al. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction[J]. Review of Scientific Instruments, 87, 013101(2016).
[30] Arroyo M P, Hanson R K. Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser[J]. Applied Optics, 32, 6104-6116(1993).
[31] Wagner S, Fisher B T, Fleming J W et al. TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames[J]. Proceedings of the Combustion Institute, 32, 839-846(2009).
[32] Li Y F, Liu Z W, Zhang T Y et al. Development and application of near-infrared laser carbon dioxide gas sensor system[J]. Acta Optica Sinica, 40, 0514003(2020).
[33] Cai W W, Kaminski C F. A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers[J]. Applied Physics Letters, 104, 034101(2014).
[34] Wood M P, Ozanyan K B. Simultaneous temperature, concentration, and pressure imaging of water vapor in a turbine engine[J]. IEEE Sensors Journal, 15, 545-551(2015).
[35] Goldenstein C S, Spearrin R M, Hanson R K. Fiber-coupled diode-laser sensors for calibration-free stand-off measurements of gas temperature, pressure, and composition[J]. Applied Optics, 55, 479-484(2016).
[36] Mathews G C, Blaisdell M G, Lemcherfi A I et al. High-bandwidth absorption-spectroscopy measurements of temperature, pressure, CO, and H2O in the annulus of a rotating detonation rocket engine[J]. Applied Physics B, 127, 165(2021).
[37] Philippe L C, Hanson R K. Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows[J]. Applied Optics, 32, 6090-6103(1993).
[38] Qu Q W, Cao Z, Xu L J et al. Reconstruction of two-dimensional velocity distribution in scramjet by laser absorption spectroscopy tomography[J]. Applied Optics, 58, 205-212(2019).
[39] Grauer S J, Steinberg A M. Linear absorption tomography with velocimetry (LATV) for multiparameter measurements in high-speed flows[J]. Optics Express, 28, 32676-32692(2020).
[40] Huang X L, Li N, Weng C S et al. In situ measurement on nonuniform velocity distribution in external detonation exhaust flow by analysis of spectrum features using TDLAS[J]. Chinese Physics B, 31, 014703(2022).
[41] Witzel O, Klein A, Meffert C et al. VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines[J]. Optics Express, 21, 19951-19965(2013).
[42] Kaebe B D, Robins N P, Boyson T K et al. 1.6 MHz scanning rate direct absorption temperature measurements using a single vertical-cavity surface-emitting laser diode[J]. Applied Optics, 57, 5680-5687(2018).
[43] Caswell A W, Roy S, An X L et al. Measurements of multiple gas parameters in a pulsed-detonation combustor using time-division-multiplexed Fourier-domain mode-locked lasers[J]. Applied Optics, 52, 2893-2904(2013).
[44] Yang X T, Fei H Z, Xie W Q. NOx emission on-line measurement for the diesel engine based on tunable diode laser absorption spectroscopy[J]. Optik, 140, 724-729(2017).
[45] Ma L H, Lau L Y, Ren W. Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy[J]. Applied Physics B, 123, 83(2017).
[46] Wei M, Kan R F, Chen B et al. Calibration-free wavelength modulation spectroscopy for gas concentration measurements using a quantum cascade laser[J]. Applied Physics B, 123, 149(2017).
[47] Spearrin R M, Goldenstein C S, Schultz I A et al. Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy[J]. Applied Physics B, 117, 689-698(2014).
[48] PogAa'ny A, Klein A, Ebert V. Measurement of water vapor line strengths in the 1.4-2.7 μm range by tunable diode laser absorption spectroscopy[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 165, 108-122(2015).
[49] Ren W, Farooq A, Davidson D F et al. CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm[J]. Applied Physics B, 107, 849-860(2012).
[50] Spearrin R M, Schultz I A, Jeffries J B et al. Laser absorption of nitric oxide for thermometry in high-enthalpy air[J]. Measurement Science and Technology, 25, 125103(2014).
[51] Sur R, Peng W Y, Strand C et al. Mid-infrared laser absorption spectroscopy of NO2 at elevated temperatures[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 187, 364-374(2017).
[52] Weng W B, Larsson J, Bood J et al. Quantitative hydrogen chloride detection in combustion environments using tunable diode laser absorption spectroscopy with comprehensive investigation of hot water interference[J]. Applied Spectroscopy, 76, 207-215(2022).
[53] Spearrin R M, Li S, Davidson D F et al. High-temperature iso-butene absorption diagnostic for shock tube kinetics using a pulsed quantum cascade laser near 11.3 μm[J]. Proceedings of the Combustion Institute, 35, 3645-3651(2015).
[54] Klingbeil A E, Jeffries J B, Hanson R K. Design of a fiber-coupled mid-infrared fuel sensor for pulse detonation engines[J]. AIAA Journal, 45, 772-778(2007).
[55] Choi D W, Doh D H, Jeon M G. The development of the simultaneous reconstruction of 2D temperature and concentration using a 6-peaks algorithm for CT-TDLAS[J]. Journal of Mechanical Science and Technology, 34, 2067-2074(2020).
[56] Choi D W, Jeon M G, Cho G R et al. Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS)[J]. Journal of Thermal Science, 25, 84-89(2016).
[57] Fisher E M D, Tsekenis S A, Yang Y J et al. A custom, high-channel count data acquisition system for chemical species tomography of aero-jet engine exhaust plumes[J]. IEEE Transactions on Instrumentation and Measurement, 69, 549-558(2020).
[58] Wang X P, Peng D, Li J S et al. Two-dimensional reconstruction of combustion flow field using wavelength-modulated absorption spectra[J]. Chinese Journal of Lasers, 48, 0711002(2021).
[59] Goldenstein C S, Spearrin R M, Jeffries J B et al. Infrared laser-absorption sensing for combustion gases[J]. Progress in Energy and Combustion Science, 60, 132-176(2017).
[60] Varghese P L, Hanson R K. Collisional narrowing effects on spectral line shapes measured at high resolution[J]. Applied Optics, 23, 2376-2385(1984).
[61] Liu X, Jeffries J B, Hanson R K et al. Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature[J]. Applied Physics B, 82, 469-478(2006).
[62] Yao L, Liu W Q, Liu J G et al. Research on open-path detection for atmospheric trace gas CO based on TDLAS[J]. Chinese Journal of Lasers, 42, 0215003(2015).
[63] Wu Q, Wang F, Li M Y et al. Simultaneous in-situ measurement of soot volume fraction, H2O concentration, and temperature in an ethylene/air premixed flame using tunable diode laser absorption spectroscopy[J]. Combustion Science and Technology, 189, 1571-1590(2017).
[64] Ma L H, Ning H B, Wu J J et al. In situ flame temperature measurements using a mid-infrared two-line H2O laser-absorption thermometry[J]. Combustion Science and Technology, 190, 393-408(2018).
[65] Fang S H, Wang Z Z, Lin X et al. Characterizing combustion of a hybrid rocket using laser absorption spectroscopy[J]. Experimental Thermal and Fluid Science, 127, 110411(2021).
[66] Du Z H, Yan Y, Li J Y et al. In situ, multiparameter optical sensor for monitoring the selective catalytic reduction process of diesel engines[J]. Sensors and Actuators B: Chemical, 267, 255-264(2018).
[67] Du Y J, Peng Z M, Ding Y J. Wavelength modulation spectroscopy for recovering absolute absorbance[J]. Optics Express, 26, 9263-9272(2018).
[68] He D, Peng Z M, Ding Y J. Time-resolved CO2 concentration and ignition delay time measurements in the combustion processes of n-butane/hydrogen mixtures[J]. Combustion and Flame, 207, 222-231(2019).
[69] Wang Y H, Zhou B, Liu C. Calibration-free wavelength modulation spectroscopy based on even-order harmonics[J]. Optics Express, 29, 26618-26633(2021).
[70] Li R J, Li F, Lin X et al. Linear calibration-free wavelength modulation spectroscopy[J/OL]. Microwave and Optical Technology Letters.
[71] Karagiannopoulos S, Cheadle E, Wright P et al. Multiwavelength diode-laser absorption spectroscopy using external intensity modulation by semiconductor optical amplifiers[J]. Applied Optics, 51, 8057-8067(2012).
[72] Gillet B, Hardalupas Y, Kavounides C et al. Infrared absorption for measurement of hydrocarbon concentration in fuel/air mixtures (MAST-B-LIQUID)[J]. Applied Thermal Engineering, 24, 1633-1653(2004).
[73] Wang F, Cen K F, Li N et al. Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy[J]. Measurement Science and Technology, 21, 045301(2010).
[74] Kasyutich V L, Martin P A. Towards a two-dimensional concentration and temperature laser absorption tomography sensor system[J]. Applied Physics B, 102, 149-162(2011).
[75] Song J L, Hong Y J, Wang G Y et al. Algebraic tomographic reconstruction of two-dimensional gas temperature based on tunable diode laser absorption spectroscopy[J]. Applied Physics B, 112, 529-537(2013).
[76] Busa K, Ellison E, McGovern B et al. Measurements on NASA Langley durable combustor rig by TDLAT: preliminary results[C], 696(2013).
[77] Ma L, Cai W W, Caswell A W et al. Tomographic imaging in practical combustion devices based on hyperspectral absorption spectroscopy[C](2009).
[78] Ma L, Li X S, Sanders S T et al. 50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography[J]. Optics Express, 21, 1152-1162(2013).
[79] Wright P, Terzija N, Davidson J L et al. High-speed chemical species tomography in a multi-cylinder automotive engine[J]. Chemical Engineering Journal, 158, 2-10(2010).
[80] Liu C, Xu L J, Chen J L et al. Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration[J]. Optics Express, 23, 22494-22511(2015).
[81] Song J L, Jiang Y J, Rao W et al. Design of a high-resolution optical measuring ring for supersonic combustion flow field[J]. Infrared and Laser Engineering, 50, 20210063(2021).
[82] Hosseinabadi A H H, Black D G, Salcudean S E. Ultra low-noise FPGA-based six-axis optical force-torque sensor: hardware and software[J]. IEEE Transactions on Industrial Electronics, 68, 10207-10217(2021).
[83] Horvat R, Jezernik K, ACˇGurkoviAcˇ M. An event-driven approach to the current control of a BLDC motor using FPGA[J]. IEEE Transactions on Industrial Electronics, 61, 3719-3726(2014).
[84] Zhao W S, Xu L J, Huang A et al. A WMS based TDLAS tomographic system for distribution retrievals of both gas concentration and temperature in dynamic flames[J]. IEEE Sensors Journal, 20, 4179-4188(2020).
[85] Jing W Y, Cao Z, Zhang H Y et al. A reconfigurable parallel data acquisition system for tunable diode laser absorption spectroscopy tomography[J]. IEEE Sensors Journal, 17, 8215-8223(2017).
[86] Zhang H Y, Cao Z, Zhao W S et al. A compact laser absorption spectroscopy tomographic system with short spectral scanning time and adjustable frame rate[J]. IEEE Transactions on Instrumentation and Measurement, 69, 8226-8237(2020).
[87] Fisher E, Tsekenis S A, Yang Y et al. An embedded processing design for 192-channel 10-40 MS/s aero-engine optical tomography: progress and continued DAQ characterisation[C](2018).
[88] Villarreal R, Varghese P L. Frequency-resolved absorption tomography with tunable diode lasers[J]. Applied Optics, 44, 6786-6795(2005).
[89] Liu C, Xu L J, Cao Z et al. Reconstruction of axisymmetric temperature and gas concentration distributions by combining fan-beam TDLAS with onion-peeling deconvolution[J]. IEEE Transactions on Instrumentation and Measurement, 63, 3067-3075(2014).
[90] Liu C, Xu L J, Li F Y et al. Resolution-doubled one-dimensional wavelength modulation spectroscopy tomography for flame flatness validation of a flat-flame burner[J]. Applied Physics B, 120, 407-416(2015).
[91] Mohamad E J, Rahim R A, Ibrahim S et al. Flame imaging using laser-based transmission tomography[J]. Sensors and Actuators A: Physical, 127, 332-339(2006).
[92] Guha A, Schoegl I M. Tomographic imaging of flames: assessment of reconstruction error based on simulated results[J]. Journal of Propulsion and Power, 30, 350-359(2014).
[93] Busa K, Bryner E, McDaniel J et al. Demonstration of capability of water flux measurement in a scramjet combustor using tunable diode laser absorption tomography and stereoscopic PIV[C], 1294(2011).
[94] Wang F, Wu Q, Huang Q X et al. Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology[J]. Optics Communications, 346, 53-63(2015).
[95] Xia H H, Kan R F, Xu Z Y et al. Two-step tomographic reconstructions of temperature and species concentration in a flame based on laser absorption measurements with a rotation platform[J]. Optics and Lasers in Engineering, 90, 10-18(2017).
[96] Gao X, Cao Z, Li H Y et al. Sparse Zernike fitting for dynamic LAS tomographic images of temperature and water vapor concentration[J]. IEEE Transactions on Instrumentation and Measurement, 71, 1-14(2022).
[97] Daun K J. Infrared species limited data tomography through Tikhonov reconstruction[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 111, 105-115(2010).
[98] Bao Y, Zhang R, Enemali G et al. Relative entropy regularized TDLAS tomography for robust temperature imaging[J]. IEEE Transactions on Instrumentation and Measurement, 70, 4501909(2021).
[99] Si J J, Fu G C, Cheng Y B et al. A quality-hierarchical temperature imaging network for TDLAS tomography[J]. IEEE Transactions on Instrumentation and Measurement, 71, 4500710(2022).
[100] Cai W W, Kaminski C F. Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows[J]. Progress in Energy and Combustion Science, 59, 1-31(2017).
[101] Cai W W, Kaminski C F. Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy[J]. Applied Physics Letters, 104, 154106(2014).
[102] Huang J Q, Liu H C, Dai J H et al. Reconstruction for limited-data nonlinear tomographic absorption spectroscopy via deep learning[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 218, 187-193(2018).
[103] Deguchi Y, Yasui D, Adachi A. Development of 2D temperature and concentration measurement method using tunable diode laser absorption spectroscopy[J]. Journal of Mechanics Engineering and Automation, 543-549(2012).
[104] Huang A, Cao Z, Wang C R et al. An FPGA-based on-chip neural network for TDLAS tomography in dynamic flames[J]. IEEE Transactions on Instrumentation and Measurement, 70, 4506911(2021).
[105] Bryner E, Busa K, McDaniel J et al. Spatially resolved temperature and water vapor concentration distributions in a flat flame burner by tunable diode laser absorption tomography[C], 1291(2011).
[106] Brown M, Barhorst T. Post-flight analysis of the diode-laser-based mass capture experiment onboard HIFiRE flight 1[C], 2359(2011).
[107] Lü X J, Li N, Weng C S. The diagnostics of detonation flow external field based on multispectral absorption spectroscopy technology[J]. Spectroscopy and Spectral Analysis, 36, 624-630(2016).
[108] Fisher E M D, Benoy T. Interleaving and error concealment to mitigate the impact of packet loss in resource-constrained TDLAS/WMS data acquisition[J]. IEEE Transactions on Instrumentation and Measurement, 67, 439-448(2018).
[110] Kawazoe H, Whitelaw J H. Computer tomography of infra-red absorption and its application to internal-combustion engines[M]. Adrian R J, Durao D F G, Heitor M V, et al. Laser techniques for fluid mechanics(2002).
[111] Wright P, Garcia-Stewart C A, Carey S J et al. Toward in-cylinder absorption tomography in a production engine[J]. Applied Optics, 44, 6578-6592(2005).
[112] Carey S J, McCann H, Hindle F P et al. Chemical species tomography by near infra-red absorption[J]. Chemical Engineering Journal, 77, 111-118(2000).
Get Citation
Copy Citation Text
Zhang Cao, Xin Gao, Fanghao Lu, Lijun Xu. Laser Absorption Spectral Tomography for Dynamical Combustion Monitoring[J]. Chinese Journal of Lasers, 2022, 49(19): 1904002
Category: Measurement and metrology
Received: Jun. 2, 2022
Accepted: Jul. 18, 2022
Published Online: Oct. 12, 2022
The Author Email: Cao Zhang (zh_cao@buaa.edu.cn), Xu Lijun (lijunxu@buaa.edu.cn)