Journal of Synthetic Crystals, Volume. 50, Issue 10, 1813(2021)

Research Progress on Semiconductor Materials and Devices for Radiation Detection

WU Rui1, FAN Donghai1, KANG Yang1, WAN Xin1, GUO Chen1, WEI Dengke1, CHEN Donglei2, WANG Tao1,3, and ZHA Gangqiang1,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(85)

    [1] [1] SIMON R C, JAMES A S, MICHAEL E P. Physics in nuclear medicine: Chapter 6 interaction of radiation with matter[M]. 2th ed. Amsterdam: Saunders, 2012: 63-85.

    [2] [2] JEN C K. On the induced current and energy balance in electronics[J]. Proceedings of the IRE, 1941, 29(6): 345-349.

    [3] [3] CAVALLERI G, GATTI E, FABRI G, et al. Extension of Ramo’s theorem as applied to induced charge in semiconductor detectors[J]. Nuclear Instruments and Methods, 1971, 92(1): 137-140.

    [5] [5] HALL R N, SOLTYS T J. High purity germanium for detector fabrication[J]. IEEE Transactions on Nuclear Science, 1971, 18(1): 160-165.

    [7] [7] ARMENGAUD E, AUGIER C, et al. Final results of the EDELWEISS-Ⅱ WIMP search using a 4-kg array of cryogenic germanium detectors with interleaved electrodes[J]. Physics Letters B, 2011, 702(5): 329-335.

    [8] [8] EBERTH J, SIMPSON J. From Ge(Li) detectors to gamma-ray tracking arrays-50 years of gamma spectroscopy with germanium detectors[J]. Progress in Particle and Nuclear Physics, 2008, 60(2): 283-337.

    [9] [9] KEMMER J. Improvement of detector fabrication by the planar process[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1984, 226(1): 89-93.

    [10] [10] KEMMER J, BURGER P, HENCK R, et al. Performance and applications of passivated ion-implanted silicon detectors[J]. IEEE Transactions on Nuclear Science, 1982, 29(1): 733-737.

    [11] [11] LUKE P N, GOULDING F S, MADDEN N W, et al. Low capacitance large volume shaped-field germanium detector[J]. IEEE Transactions on Nuclear Science, 1989, 36(1): 926-930.

    [12] [12] AKIMOV Y K. Silicon radiation detectors (Review)[J]. Instruments and Experimental Techniques, 2007, 50(1): 1-28.

    [13] [13] PARKER S I, KENNEY C J, SEGAL J. 3D: A proposed new architecture for solid-state radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 395(3): 328-343.

    [14] [14] DAVIA C, HASI J, KENNEY C, et al. 3D silicon detectors: status and applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 549(1/2/3): 122-125.

    [15] [15] LI Z. Novel silicon stripixel detector: concept, simulation, design, and fabrication[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 518(3): 738-753.

    [16] [16] CHEN J W, DING H, LI Z, et al. 3D simulations of device performance for 3D-Trench electrode detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 796: 34-37.

    [17] [17] KENNEY C J, PARKER S, WALCKIERS E. Results from 3-D silicon sensors with wall electrodes: near-cell-edge sensitivity measurements as a preview of active-edge sensors[J]. IEEE Transactions on Nuclear Science, 2001, 48(6): 2405-2410.

    [18] [18] LIU X J, BORNEFALK H, CHEN H, et al. A silicon-strip detector for photon-counting spectral CT: energy resolution from 40 keV to 120 keV[J]. IEEE Transactions on Nuclear Science, 2014, 61(3): 1099-1105.

    [19] [19] TINDALL C, HAU I D, LUKE P N. Evaluation of Si(Li) detectors for use in Compton telescopes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 505(1/2): 130-135.

    [20] [20] WILLIAMS T, MARTENS A, CASSOU K, et al. Novel applications and future perspectives of a fast diamond gamma ray detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 845: 199-202.

    [21] [21] EBERHARDT J E, RYAN R D, TAVENDALE A J. High-resolution nuclear radiation detectors from epitaxial n-GaAs[J]. Applied Physics Letters, 1970, 17(10): 427-429.

    [22] [22] KOBAYASHI T, KURU I, HOJO A, et al. Fe-doped high purity GaAs as a room temperature gamma-ray spectrometric detector[J]. IEEE Transactions on Nuclear Science, 1976, 23(1): 97-101.

    [23] [23] BENZ K W, IRSIGLER R, LUDWIG J, et al. X-ray detectors based on semi-insulating GaAs substrate[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 322(3): 493-498.

    [24] [24] BAVDAZ M, PEACOCK A, OWENS A. Future space applications of compound semiconductor X-ray detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 458(1/2): 123-131.

    [25] [25] LIOLIOU G, BARNETT A M. Prototype GaAs X-ray detector and preamplifier electronics for a deep seabed mineral XRF spectrometer[J]. X-Ray Spectrometry, 2018, 47(3): 201-214.

    [26] [26] AMENDOLIA S R, ANNOVAZZI A, BIGONGIARI A, et al. A prototype for a mammographic head and related developments[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 518(1/2): 382-385.

    [27] [27] KANIA D R, LANE S, JONES B, et al. High speed detection of thermonuclear neutrons with solid state detectors[J]. IEEE Transactions on Nuclear Science, 1988, 35(1): 387-388.

    [28] [28] MCGREGOR D S, HAMMIG M D, YANG Y H, et al. Design considerations for thin film coated semiconductor thermal neutron detectors—I: basics regarding alpha particle emitting neutron reactive films[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 500(1/2/3): 272-308.

    [29] [29] BELL S L, SEN S. Crystal growth of Cd1-xZnxTe and its use as a superior substrate for LPE growth of Hg0.8Cd0.2Te[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1985, 3(1): 112-115.

    [30] [30] DOTY F P. Properties of CdZnTe crystals grown by a high pressure Bridgman method[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1992, 10(4): 1418.

    [31] [31] BARBER H B, BARRETT H H, DERENIAK E L, et al. A gamma-ray imager with multiplexer readout for use in ultra-high-resolution brain SPECT[J]. IEEE Transactions on Nuclear Science, 1993, 40(4): 1140-1144.

    [32] [32] ROGULSKI M M, BARBER H B, BARRETT H H, et al. Ultra-high-resolution brain SPECT imaging: simulation results[J]. IEEE Conference on Nuclear Science Symposium and Medical Imaging, 1992: 1071-1073 vol.2.

    [33] [33] HAMILTON W J, RHIGER D R, SEN S, et al. Very high resolution detection of gamma radiation at room-temperature using p-i-n detectors of CdZnTe and HgCdTe[J]. IEEE Transactions on Nuclear Science, 1994, 41(4): 989-992.

    [34] [34] HAMILTON W J, RHIGER D R, SEN S, et al. HgCdTe/CdZnTe P-I-N high-energy photon detectors[J]. Journal of Electronic Materials, 1996, 25(8): 1286-1292.

    [36] [36] WU S H, ZHA G Q, CAO K, et al. The growth of CdZnTe epitaxial thick film by close spaced sublimation for radiation detector[J]. Vacuum, 2019, 168: 108852.

    [37] [37] ZHA G Q, LIN Y, ZENG D M, et al. Resistive switching properties in CdZnTe films[J]. Applied Physics Letters, 2015, 106(6): 062103.

    [38] [38] ZHA G Q, YANG J, XU L Y, et al. The effects of deep level traps on the electrical properties of semi-insulating CdZnTe[J]. Journal of Applied Physics, 2014, 115(4): 043715.

    [39] [39] XU L Y, WANG J Y, DONG J P, et al. Improvement of surface defects in CdZnTe crystals by rapid thermal annealing[J]. Journal of Electronic Materials, 2020, 49(8): 4563-4568.

    [40] [40] XU L Y, JIE W Q. Deep-level defect effects on the low-temperature photoexcitation process in CdZnTe crystals[J]. Journal of Electronic Materials, 2020, 49(1): 429-434.

    [44] [44] DOTY F P, BARBER H B, AUGUSTINE F L, et al. Pixellated CdZnTe detector arrays[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 353(1/2/3): 356-360.

    [45] [45] HE Z, KNOLL G F, WEHE D K, et al. Coplanar grid patterns and their effect on energy resolution of CdZnTe detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 411(1): 107-113.

    [46] [46] MONTEMONT G, ARQUES M, VERGER L, et al. A capacitive Frisch grid structure for CdZnTe detectors[J]. IEEE Transactions on Nuclear Science, 2001, 48(3): 278-281.

    [47] [47] ERLANDSSON K, HOWELL E, ROTH N, et al. Assessing possible use of CZT technology for application to brain SPECT[C]//2011 IEEE Nuclear Science Symposium Conference Record. October 23-29, 2011, Valencia, Spain. IEEE, 2011: 3354-3358.

    [48] [48] LIU C, CHAN C, HARRIS M, et al. Respiratory gating for a stationary dedicated cardiac SPECT system[C]//2011 IEEE Nuclear Science Symposium Conference Record. October 23-29, 2011, Valencia, Spain. IEEE, 2011: 2898-2901.

    [50] [50] BARBER W C, WESSEL J C, NYGARD E, et al. High flux energy-resolved photon-counting X-ray imaging arrays with CdTe and CdZnTe for clinical CT[C]//2013 3rd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications (ANIMMA). June 23-27, 2013, Marseille, France. IEEE, 2013: 1-5.

    [51] [51] MATSUURA D, GENBA K, KURODA Y, et al. “ASTROCAM 7000HS” radioactive substance visualization camera[EB/OL]. 2014

    [52] [52] MCCLESKEY M, KAYE W, MACKIN D S, et al. Evaluation of a multistage CdZnTe Compton camera for prompt γ imaging for proton therapy[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 785: 163-169.

    [53] [53] JOHNS P M, NINO J C. Room temperature semiconductor detectors for nuclear security[J]. Journal of Applied Physics, 2019, 126(4): 040902.

    [54] [54] KASAP S O, ROWLANDS J A. Review X-ray photoconductors and stabilized a-Se for direct conversion digital flat-panel X-ray image-detectors[J]. Journal of Materials Science: Materials in Electronics, 2000, 11(3): 179-198.

    [55] [55] KASAP S, FREY J B, BELEV G, et al. Amorphous selenium and its alloys from early xeroradiography to high resolution X-ray image detectors and ultrasensitive imaging tubes[J]. Physica Status Solidi (b), 2009, 246(8): 1794-1805.

    [56] [56] HOKE E T, SLOTCAVAGE D J, DOHNER E R, et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics[J]. Chemical Science, 2015, 6(1): 613-617.

    [57] [57] QUE W, ROWLANDS J A. X-ray imaging using amorphous selenium: inherent spatial resolution[J]. Medical Physics, 1995, 22(4): 365-374.

    [58] [58] YUAN Y B, CHAE J, SHAO Y C, et al. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells[J]. Advanced Energy Materials, 2015, 5(15): 1500615.

    [59] [59] CHEN Q S, WU J, OU X Y, et al. All-inorganic perovskite nanocrystal scintillators[J]. Nature, 2018, 561(7721): 88-93.

    [61] [61] FRANKLIN M, FRY A, GAN K K, et al. Development of diamond radiation detectors for SSC and LHC[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 315(1/2/3): 39-42.

    [62] [62] HIBINO K, KASHIWAGI T, OKUNO S, et al. The design of diamond Compton telescope[J]. Astrophysics and Space Science, 2007, 309(1/2/3/4): 541-544.

    [63] [63] LECHNER P, HARTMANN R, SOLTAU H, et al. Pair creation energy and Fano factor of silicon in the energy range of soft X-rays[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 377(2/3): 206-208.

    [64] [64] TORRISI L, SCIUTO A, CANNAV A, et al. SiC detector for sub-MeV alpha spectrometry[J]. Journal of Electronic Materials, 2017, 46(7): 4242-4249.

    [65] [65] ROGALLA M, RUNGE K, SLDNER-REMBOLD A. Particle detectors based on semi-insulating silicon carbide[J]. Nuclear Physics B-Proceedings Supplements, 1999, 78(1/2/3): 516-520.

    [66] [66] EBERTH J, SIMPSON J. From Ge(Li) detectors to gamma-ray tracking arrays-50 years of gamma spectroscopy with germanium detectors[J]. Progress in Particle and Nuclear Physics, 2008, 60(2): 283-337.

    [67] [67] ALEXIEV D, REINHARD M I, MO L, et al. Review of Ge detectors for gamma spectroscopy[J]. Australasian Physics & Engineering Sciences in Medicine, 2002, 25(3): 102-109.

    [68] [68] SOLTANI A, BARKAD H A, MATTALAH M, et al. 193 nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors[J]. Applied Physics Letters, 2008, 92(5): 053501.

    [69] [69] LI J, MAJETY S, DAHAL R, et al. Dielectric strength, optical absorption, and deep ultraviolet detectors of hexagonal boron nitride epilayers[J]. Applied Physics Letters, 2012, 101(17): 171112.

    [70] [70] MAITY A, GRENADIER S J, LI J, et al. High sensitivity hexagonal boron nitride lateral neutron detectors[J]. Applied Physics Letters, 2019, 114(22): 222102.

    [71] [71] ZHIGAL’SKII G P, KHOLOMINA T A. Excess noise and deep levels in GaAs detectors of nuclear particles and ionizing radiation[J]. Journal of Communications Technology and Electronics, 2015, 60(6): 517-542.

    [72] [72] ALEXIEV D, BUTCHER K S A. High purity liquid phase epitaxial gallium arsenide nuclear radiation detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 317(1/2): 111-115.

    [73] [73] KHLUDKOV S S. Diffusion of impurities in GaAs, diffusion structures and devices[J]. Tomsk State University Journal, 2005, (285): 84-94.

    [74] [74] KANNO I, HISHIKI S, SUGIURA O, et al. InSb cryogenic radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 568(1): 416-420.

    [75] [75] FUNAKI M, OZAKI T, SATOH K, et al. Growth and characterization of CdTe single crystals for radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 436(1/2): 120-126.

    [76] [76] SELLIN P J, DAVIES A W, BOROUMAND F, et al. IBIC characterization of charge transport in CdTe∶Cl[J]. Semiconductors, 2007, 41(4): 395-401.

    [77] [77] YCEL H, BIRGL , UYAR E, et al. A novel approach in voltage transient technique for the measurement of electron mobility and mobility-lifetime product in CdZnTe detectors[J]. Nuclear Engineering and Technology, 2019, 51(3): 731-737.

    [78] [78] SZELES C. Advances in the crystal growth and device fabrication technology of CdZnTe room temperature radiation detectors[J]. IEEE Transactions on Nuclear Science, 2004, 51(3): 1242-1249.

    [79] [79] RAFIEI R, BOARDMAN D, SARBUTT A, et al. Investigation of the charge collection efficiency of CdMnTe radiation detectors[J]. IEEE Transactions on Nuclear Science, 2012, 59(3): 634-641.

    [80] [80] HOSSAIN A, CUI Y, BOLOTNIKOV A E, et al. Vanadium-doped cadmium manganese telluride (Cd1-xMnxTe) crystals as X- and gamma-ray detectors[J]. Journal of Electronic Materials, 2009, 38(8): 1593-1599.

    [81] [81] MYCIELSKI A, BURGER A, SOWINSKA M, et al. Is the (Cd, Mn)Te crystal a prospective material for X-ray and γ-ray detectors?[J]. Physica Status Solidi (c), 2005, 2(5): 1578-1585.

    [82] [82] KABIR M Z, HIJAZI N. Temperature and field dependent effective hole mobility and impact ionization at extremely high fields in amorphous selenium[J]. Applied Physics Letters, 2014, 104(19): 192103.

    [83] [83] BACIAK J E, HE Z. Long-term stability of 1-cm thick pixelated HgI2 gamma-ray spectrometers operating at room temperature[J]. IEEE Transactions on Nuclear Science, 2004, 51(4): 1886-1894.

    [84] [84] BURGER A, NASON D, FRANKS L. Mercuric iodide in prospective[J]. Journal of Crystal Growth, 2013, 379: 3-6.

    [85] [85] BEYERLE A, HULL K, MARKAKIS J, et al. Gamma-ray spectrometry with thick mercuric iodide detectors[J]. Nuclear Instruments and Methods in Physics Research, 1983, 213(1): 107-113.

    [86] [86] LIU J, ZHANG Y. Growth of lead iodide single crystals used for nuclear radiation detection of Gamma-rays[J]. Crystal Research and Technology, 2017, 52(3): 1600370.

    [87] [87] MANFREDOTTI C, MURRI R, QUIRINI A, et al. PbI2 as nuclear particle detector[J]. IEEE Transactions on Nuclear Science, 1977, 24(1): 126-128.

    [88] [88] LINTEREUR A T, QIU W, NINO J C, et al. Iodine based compound semiconductors for room temperature gamma-ray spectroscopy[C]//SPIE Defense and Security Symposium. Proc SPIE 6945, Optics and Photonics in Global Homeland Security Ⅳ, Orlando, Florida, USA. 2008, 6945: 694503.

    [89] [89] NASON D, KELLER L. The growth and crystallography of bismuth tri-iodide crystals grown by vapor transport[J]. Journal of Crystal Growth, 1995, 156(3): 221-226.

    [90] [90] JELLISON G E, RAMEY J O, BOATNER L A. Optical functions of BiI3 as measured by generalized ellipsometry[J]. Physical Review B, 1999, 59(15): 9718-9721.

    [91] [91] HITOMI K, SHOJI T, ISHII K. Advances in TlBr detector development[J]. Journal of Crystal Growth, 2013, 379: 93-98.

    [92] [92] SHOROHOV M, KOUZNETSOV M, LISITSKIY I, et al. Recent results in TlBr detector crystals performance[J]. IEEE Transactions on Nuclear Science, 2009, 56(4): 1855-1858.

    [93] [93] KIM H, CIRIGNANO L, CHURILOV A, et al. Developing larger TlBr detector: detector performance[J]. IEEE Transactions on Nuclear Science, 2009, 56(3): 819-823.

    CLP Journals

    [1] YANG Yang, LIU Zhirong. Research Progress of Single Crystal Growth Methods for Nuclear Radiation Detection[J]. Journal of Synthetic Crystals, 2022, 51(7): 1284

    Tools

    Get Citation

    Copy Citation Text

    WU Rui, FAN Donghai, KANG Yang, WAN Xin, GUO Chen, WEI Dengke, CHEN Donglei, WANG Tao, ZHA Gangqiang. Research Progress on Semiconductor Materials and Devices for Radiation Detection[J]. Journal of Synthetic Crystals, 2021, 50(10): 1813

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 13, 2021

    Accepted: --

    Published Online: Dec. 6, 2021

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics