Acta Photonica Sinica, Volume. 52, Issue 11, 1110001(2023)

Remote Sensing Image Fusion Method Based on Improved Swin Transformer

Zitong LI, Jiankang ZHAO*, Jingran XU, Haihui LONG, and Chuanqi LIU
Author Affiliations
  • School of Electronic Information and Electrical Engineering,School of Perceptual Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,China
  • show less
    References(23)

    [1] DADRASS J F, SAMADZADEGAN F, MEHRAVAR S et al. A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 171, 101-117(2021).

    [2] WANG Z, MA Y, ZHANG Y. Review of pixel-level remote sensing image fusion based on deep learning[J]. Information Fusion, 90, 36-58(2023).

    [3] VIVONE G, GARZELLI A. A benchmarking protocol for pansharpening: dataset, preprocessing, and quality assessment[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 17(2021).

    [4] VIVONE G, ALPARONE L, CHANUSSOT J et al. A Critical comparison among pansharpening algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 53, 2565-2586(2015).

    [5] AIAZZI B, ALPARONE L, BARONTI S et al. MTF-tailored multiscale fusion of high-resolution MS and pan imagery[J]. Photogrammetric Engineering & Remote Sensing, 72, 591-596(2006).

    [6] SIRGUEY P, MATHIEU R, ARNAUD Y et al. Improving MODIS spatial resolution for snow mapping using wavelet fusion and ARSIS Concept[J]. IEEE Geoscience and Remote Sensing Letters, 5, 78-82(2008).

    [7] SHAH V P, YOUNAN N H, KING R L. An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets[J]. IEEE Transactions on Geoscience and Remote Sensing, 46, 1323-1335(2008).

    [8] CHOI M. A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter[J]. IEEE Transactions on Geoscience and Remote Sensing, 44, 1672-1682(2006).

    [9] BALLESTER C, CASELLES V, IGUAL L et al. A variational model for P+XS image fusion[J]. International Journal of Computer Vision, 69, 43-58(2006).

    [10] MASI G, COZZOLINO D, VERDOLIVA L et al. Pansharpening by Convolutional Neural Networks[J]. Remote Sensing, 8, 594(2016).

    [11] YANG J, FU X, HU Y et al. PanNet: a deep network architecture for pan-sharpening[C], 10012-10022(2021).

    [12] YUAN Q, WEI Y, MENG X et al. A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 978-989(2018).

    [13] DOSOVITSKIY A, BEYER L, KOLESNIKOV A et al. An image is worth 16×16 words: Transformers for image recognition at scale[J]. arXiv Preprint(2020).

    [14] LIU Z, LIN Y, CAO Y et al. Swin transformer: hierarchical vision transformer using shifted windows[C], 10012-10022(2021).

    [15] ZHOU H, LIU Q, WANG Y. PanFormer: a transformer based model for pan-sharpening[C], 1-6(2022).

    [16] FAN Wensheng, LIU Fan, LI Ming. Remote sensing image fusion based on double-branch u-shaped transformer[J]. Acta Photonica Sinica, 52, 0428002(2023).

    [17] LI Ming, LIU Fan, LI Jingzhi. Remote sensing image fusion with detail injection combining convolutional attention module and convolutional autoencoder[J]. Acta Photonica Sinica, 51, 0610005(2022).

    [18] LI B, CUI W, WANG W et al. Two-stream convolution augmented transformer for human activity recognition[C], 35, 286-293(2021).

    [19] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[J]. Medical Image Computing and Computer-Assisted Intervention, 234-241(2015).

    [20] MENG X, XIONG Y, SHAO F et al. A large-scale benchmark data set for evaluating pansharpening performance: overview and implementation[J]. IEEE Geoscience and Remote Sensing Magazine, 9, 18-52(2021).

    [21] XIANG Z, XIAO L, YANG J et al. Detail-injection-model-inspired deep fusion network for pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-15(2022).

    [22] IN Z R, ZHANG T J, JIANG T X et al. LAGConv: local-context adaptive convolution kernels with global harmonic bias for pansharpening[C], 36, 1113-1121(2022).

    [23] LIU X, LIU Q, WANG Y. Remote sensing image fusion based on two-stream fusion network[J]. Information Fusion, 55, 1-15(2020).

    Tools

    Get Citation

    Copy Citation Text

    Zitong LI, Jiankang ZHAO, Jingran XU, Haihui LONG, Chuanqi LIU. Remote Sensing Image Fusion Method Based on Improved Swin Transformer[J]. Acta Photonica Sinica, 2023, 52(11): 1110001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 8, 2023

    Accepted: Jun. 26, 2023

    Published Online: Dec. 22, 2023

    The Author Email: Jiankang ZHAO (zhaojiankang@sjtu.edu.cn)

    DOI:10.3788/gzxb20235211.1110001

    Topics