Electronics Optics & Control, Volume. 31, Issue 1, 1(2024)
Key Technologies and Research Progress of Morphing Aircraft Structure
[1] [1] BARBARINO S,BILGEN O,AJAJ R M,et al.A review of morphing aircraft[J].Journal of Intelligent Material Systems and Structures,2011,22(9):823-877.
[3] [3] SPILLMAN J J.The use of variable camber to reduce drag,weight and costs of transport aircraft[J].The Aeronautical Journal,1992,96(951).doi:10.1017/S00019 24000024404.
[4] [4] STANEWSKY E.Adaptive wing and flow control technology[J].Progress in Aerospace Sciences,2001,37(7):583-667.
[5] [5] Boeing Aerospace Company.Variable camber wing[R].Chicaga,IL:Boeing Aerospace Company,1973.
[6] [6] WINTZER M,STURDZA P,KROO I.Conceptual design of conventional and oblique wing configurations for small supersonic aircraft[C]//The 44th AIAA Aerospace Sciences Meeting and Exhibit.Reno, NV:AIAA, 2006.doi:10.2514/6.2006-930.
[7] [7] WANG L X,XU Z J,YUE T.Dynamic characteristics analysis and flight control design for oblique wing aircraft[J].Chinese Journal of Aeronautics,2016,29(6):1664-1672.
[8] [8] DECAMP R W,HARDY R.Mission adaptive wing advanced research concepts[C]//The 11th Atmospheric Flight Mechanics Conference.Seattle, WA:AIAA, 1984.doi:10.2514/6.1984-2088.
[9] [9] BONNEMA K,SMITH S.AFTI/F-111 mission adaptive wing flight research program[C]//The 4th Flight Test Conference.San Diego, CA:AIAA, 1988.doi:10.2514/6.1988-2118.
[10] [10] SMITH S B,NELSON D W.Determination of the aerodynamic characteristics of the mission adaptive wing[J].Journal of Aircraft,1990,27(11).doi:10.2514/3.45965.
[11] [11] SIMPSON J O,WISE S A,BRYANT R G,et al.Innovative materials for aircraft morphing [R].Hampton,VA:NASA Langley Research Center,1999.
[12] [12] LOVE M H,ZINK P S,STROUD R I,et al.Impact of actuation concepts on morphing aircraft structures[C]//The 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference.Palm Springs,CA:AIAA,2004.doi:10.2514/6.2004-1724.
[13] [13] ZHENG M,KIEN V K,LIEW J Y R.Aircraft morphing wing concepts with radical geometry change[J].The IES Journal Part A:Civil & Structural Engineering,2010,3(3):188-195.
[14] [14] FLANAGAN J,STRUTZENBERG R,MYERS R,et al.Development and flight testing of a morphing aircraft,the NextGen MFX-1[C]//The 48th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Honolulu,HI:AIAA,2007.doi:10.2514/6.2007-1707.
[15] [15] SINAPIUS M,MONNER H P,KINTSCHER M,et al.DLR‘s morphing wing activities within the European network[J].Procedia IUTAM,2014,10:416-426.
[16] [16] European Commission.The Community Research and Development Information Service (CORDIS) [EB/OL].[2023-06-16].http://cordis.europa.eu/en.
[17] [17] CAMPANILE L F.Initial thoughts on weight penalty effects in shape-adaptable systems[J].Journal of Intelligent Material Systems and Structures,2005,16(1).doi:10.1177/1045389X050466.
[18] [18] JHA A K,KUDVA J N.Morphing aircraft concepts, classifications,and challenges[C]//Proceedings of SPIE-The International Society for Optical Engineering.San Diego,CA:SPIE,2004.doi:10.1117/12.544212.
[19] [19] WEISSHAAR T A.Morphing aircraft systems:historical perspectives and future challenges[J].Journal of Aircraft,2013,50(2).doi:10.2514/1.C031456.
[20] [20] RAYMER D P.Aircraft design:a conceptual approach[M].5th ed.Reston:American Institute of Aeronautics and Astronautics,2012.
[21] [21] SATTI R,LI Y B,SHOCK R,et al.Computational aeroacoustic analysis of a high-lift configuration[C]//The 46th AIAA Aerospace Sciences Meeting and Exhibit.Reno,NV:AIAA,2008.doi:10.2514/6.2008-34.
[22] [22] MONNER H P,KINTSCHER M,LORKOWSKI T,et al.Design of a smart droop nose as leading edge high lift system for transportation aircrafts[C]//The 50th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference 17th AIAA/ASME/AHS Adaptive Structures Conference 11th AIAA.Palm Springs,CA:AIAA,2009.doi:10.2514/6.2009-2128.
[23] [23] KINTSCHER M,WIEDEMANN M,MONNER H P,et al.Design of a smart leading edge device for low speed wind tunnel tests in the European project SADE[J].International Journal of Structural Integrity,2011,2(4):383-405.
[24] [24] EGUEA J P,BRAVO-MOSQUERA P D,CATALANO F M.Camber morphing winglet influence on aircraft drag breakdown and tip vortex structure [J].Aerospace Science and Technology,2021,119:107148.
[25] [25] RIVERO A E,FOURNIER S,MANOLESOS M,et al.Experimental aerodynamic comparison of active camber morphing and trailing-edge flaps[J].AIAA Journal,2021,59(7):2627-2640.
[26] [26] ZHANG J Y,SHAW A D,WANG C,et al.Aeroelastic model and analysis of an active camber morphing wing[J].Aerospace Science and Technology,2021,111:106534.
[27] [27] BURNETT E L,BERANEK J A,HOLM-HANSEN B T,et al.Design and flight test of active flutter suppression on the X-56A multi-utility technology test-bed aircraft[J].The Aeronautical Journal,2016,120(1228):893-909.
[29] [29] PARKER H F.The parker variable camber wing[R].Washington,DC:National Advisory Committee for Aeronautics,1920.
[30] [30] BARBARINO S,FLORES E I S,AJAJ R M,et al.A review on shape memory alloys with applications to morphing aircraft[J].Smart Materials and Structures,2014,23(6):063001.
[31] [31] KUDVA J N,JARDINE A P,MARTIN C A,et al.Overview of the ARPA/WL smart structures and materials development-smart wing contract[C]//Smart Structures and Materials 1996:Industrial and Commercial Applications of Smart Structures Technologies.San Diego,CA:SPIE,1996.doi:10.1117/12.239124.
[32] [32] KUDVA J N,MARTIN C A,SCHERER L B,et al.Overview of the DARPA/AFRL/NASA smart wing program[C]//Smart Structures and Materials 1999:Industrial and Commercial Applications of Smart Structures Technologies.Newport Beach,CA:SPIE,1999.doi:10.1117/12.351561.
[33] [33] HETRICK J,OSBORN R,KOTA S,et al.Flight testing of mission adaptive compliant wing[C]//The 48th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Honolulu,HI:AIAA,2007.doi:10.2514/6.2007-1709.
[34] [34] KOTA S,OSBORN R,ERVIN G F.Mission adaptive compliant wing-design,fabrication and flight test[J].NATO,2006(RTO-MP-AVT-168):1-20.
[35] [35] CRAMER N B,CELLUCCI D W,FORMOSO O B,et al.Elastic shape morphing of ultralight structures by programmable assembly[J].Smart Materials and Structures,2019,28(5).doi:10.1088/1361-665X/ab0ea2.
[36] [36] POONSONG P.Design and analysis of a multi-section variable camber wing[D].Maryland:University of Maryland,2005.
[37] [37] BAKER D,FRISWELL M I.Design of a compliant aerofoil using topology optimisation[C]//Proceedings of International Workshop on Smart Materials and Structures.Toronto:Cansmart Workshop,2006:1-9.
[38] [38] BAKER D,FRISWELL M I.Determinate structures for wing camber control[J].Smart Materials & Structures,2009,(3):035014.
[39] [39] BAKER D,FRISWELL M I,LIEVEN N A J.Active truss structures for wing morphing[C]//ECCOMAS Thematic Conference on Smart Structures and Materials.Lisbon:ECCOMAS,2005:18-21.
[40] [40] WOODS B K S,FRISWELL M I.Preliminary investigation of a fishbone active camber concept[C]//ASME 2012 Conference on Smart Materials,Adaptive Structures and Intelligent Systems.Stone Mountain,GA:ASME,2012:555-563.
[42] [42] WOODS B K S,BILGEN O,FRISWELL M I.Wind tunnel testing of the fish bone active camber morphing concept[J].Journal of Intelligent Material Systems & Structures,2014,25(7):772-785.
[43] [43] WOODS B K S,FINCHAM J,FRISWELL M I.Aerodynamic modelling of the fish bone active camber morphing concept[C]//Royal Aeronautical Society Conference on Advanced Aero Concepts,Designs and Operations.Bristol,UK:Royal Aeronautical Society,2014:1-12.
[44] [44] WOODS B K S,FRISWELL M I.Structural analysis of the fish bone active camber concept[C]//Proceedings of the AIDAA XXII Conference.Napoli:AIDAA.2013:1-12.
[45] [45] WOODS B K S,FRISWELL M I.Structural characterization of the fish bone active camber morphing airfoil[C]//The 22nd AIAA/ASME/AHS Adaptive Structures Conference.National Harbor,MD:AIAA,2014.doi:10.2514/6.2014-1122.
[46] [46] WOODS B K S,DAYYANI I,FRISWELL M I.Fluid/structure-interaction analysis of the fish-bone-active-camber morphing concept[J].Journal of Aircraft,2015,52(1):307-319.
[47] [47] RIVERO A E,WEAVER P M,COOPER J E,et al.Parametric structural modelling of fish bone active camber morphing aerofoils[J].Journal of Intelligent Material Systems and Structures,2018,29(9):2008-2026.
[48] [48] DE BREUKER R,MKHOYAN T,NAZEER N,et al.Overview of the SmartX wing technology integrator[J].Actuators,2022,11(10):302.
[53] [53] AFONSO F,VALE J,LAU F,et al.Performance based multidisciplinary design optimization of morphing aircraft[J].Aerospace Science and Technology,2017,67:1-12.
[54] [54] BEAVERSTOCK C S,FINCHAM J,FRISWELL M I,et al.Effect of symmetric & asymmetric span morphing on flight dynamics[C]//AIAA Atmospheric Flight Mechanics Conference.National Harbor,MD:AIAA,2014.doi:10.2514/6.2014-0545.
[56] [56] AJAJ R M,FRISWELL M,SAAVEDRA FLORES E I,et al.Span morphing:a conceptual design study[C]//The 53rd AIAA/ASME/ASCE/AHS/ASC Structures,Struc-tural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA.Honolulu,HI:AIAA,2012.doi:10.2514/6.2012-1510.
[57] [57] WEISSHAAR T A.Morphing aircraft technology-new shapes for aircraft design[J].NATO,2006(RTO-MP-AVT-141):1-20.
[58] [58] MESTRINHO J,GAMBOA P,SANTOS P.Design optimization of a variable-span morphing wing for a small UAV[C]//The 52nd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference.Denver,CO:AIAA,2011.doi:10.2514/6.2011-2025.
[59] [59] LESIEUTRE G A,BROWNE J A,FRECKER M I.Scaling of performance,weight,and actuation of a 2-D compliant cellular frame structure for a morphing wing[J].Journal of Intelligent Material Systems and Structures,2011,22(10):979-986.
[61] [61] NAMGOONG H,CROSSLEY W A,LYRINTZIS A S.Aerodynamic optimization of a morphing airfoil using energy as an objective[J].AIAA Journal,2007,45(9):2113-2124.
[62] [62] ROTH B D,CROSSLEY W A.Application of optimization techniques in the conceptual design of morphing aircraft[C]//The 3rd Annual Aviation Technology, Integration,and Operations (ATIO) Forum.Denver,CO:AIAA, 2003.doi:10.2514/6.2003-6733.
[63] [63] VALASEK J.Morphing aerospace vehicles and structures[M].New York:John Wiley & Sons,2012.
[64] [64] MIN Z,KIEN V K,RICHARD L J Y.Aircraft morphing wing concepts with radical geometry change[J].The IES Journal Part A:Civil & Structural Engineering,2010,3(3):188-195.doi:10.1080/19373261003607972.
[65] [65] KHEONG L W,JACOB J D.In flight aspect ratio morphing using inflatable wings[C]//The 46th AIAA Aerospace Sciences Meeting and Exhibit.Reno,NV:AIAA, 2008.doi:10.2514/6.2008-425.
[66] [66] BLONDEAU J,RICHESON J,PINES D J.Design of a morphing aspect ratio wing using an inflatable telescoping spar[C]//The 44th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Norfolk,VA:AIAA,2003.doi:10.2514/6.2003-1718.
[70] [70] MCLEAN D.Wingtip devices:what they do and how they do it[C]//Boeing Performance and Flight Operations Engineering Conference.Arlington County,VA:Boeing Aerospace Company,2005:1-20.
[71] [71] URSACHE N M,MELIN T,ISIKVEREN A T,et al.Technology integration for active poly-morphing winglets development[C]//ASME 2008 Conference on Smart Materials,Adaptive Structures and Intelligent Systems.Ellicott City,MD:ASME,2008:775-782.
[72] [72] SMITH D D,AJAJ R M,ISIKVEREN A T,et al.Multi-objective optimization for the multiphase design of active polymorphing wings[J].Journal of Aircraft,2012,49(4):1153-1160.
[73] [73] SMITH D D,LOWENBERG M H,JONES D P,et al.Computational and experimental validation of the active morphing wing[J].Journal of Aircraft,2014,51(3):925-937.
[75] [75] BOURDIN P,GATTO A,FRISWELL M I.Aircraft control via variable cant-angle winglets[J].Journal of Aircraft,2008,45(2):414-423.
[76] [76] MOHOLT M,BENAFAN O.Spanwise adaptive wing[R].Cleveland,OH:NASA‘s Glenn Research Center,2017.
[77] [77] WILSON T,KIRK J,HOBDAY J,et al.Small scale flying demonstration of semi aeroelastic hinged wing tips[C]//Proceedings of the International Forum on Aeroelasticity and Structural Dynamics.Savannah,GA:IFASD,2019:1-19.
[78] [78] CASTRICHINI A,SIDDARAMAIAH V H,CALDERON D E,et al.Preliminary investigation of use of flexible folding wing tips for static and dynamic load alleviation[J].The Aeronautical Journal,2017,121(1235):73-94.
[79] [79] CHEUNG R C M,REZGUI D,COOPER J E,et al.Testing of folding wingtip for gust load alleviation of flexible high-aspect-ratio wing[J].Journal of Aircraft,2020,57(5):876-888.
[80] [80] THILL C,ETCHES J,BOND I,et al.Morphing skins[J].The Aeronautical Journal,2008,112(1129):117-139.
[81] [81] HAN M W,RODRIGUE H,KIM H I,et al.Shape memory alloy/glass fiber woven composite for soft morphing winglets of unmanned aerial vehicles[J].Composite Structures,2016,140:202-212.
[83] [83] CHEN Y J,YIN W L,LIU Y J,et al.Structural design and analysis of morphing skin embedded with pneumatic muscle fibers[J].Smart Materials and Structures, 2011,20(8):085033.
[84] [84] SUN J,GAO H L,SCARPA F,et al.Active inflatable auxetic honeycomb structural concept for morphing wingtips[J].Smart Materials and Structures,2014,23(12):125 023.
[85] [85] SUN J,DU L Z,SCARPA F,et al.Morphing wingtip structure based on active inflatable honeycomb and shape memory polymer composite skin:a conceptual work[J].Aerospace Science and Technology,2021,111:106541.
[86] [86] FALCO L,GOMES A A,SULEMAN A.Aero-structural design optimization of a morphing wingtip[J].Journal of Intelligent Material Systems and Structures,2011,22(10):1113-1124.
[87] [87] GOMES A,FALCAO L,SULEMAN A.Study of an articulated winglet mechanism[C]//The 54th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Boston,MA:AIAA,2013.doi:10.2514/6.2013-1452.
[88] [88] SHAW A D,DAYYANI I,FRISWELL M I.Optimisation of composite corrugated skins for buckling in morphing aircraft[J].Composite Structures,2015,119:227-237.
[90] [90] WANG C,KHODAPARAST H H,FRISWELL M I,et al.An equivalent model of corrugated panels with axial and bending coupling[J].Computers & Structures,2017, 183:61-72.
[92] [92] WANG C,XIA Y,FRISWELL M I,et al.Predicting global strain limits for corrugated panels[J].Composite Structures,2020,231:111472.
[93] [93] WANG C,KHODAPARAST H H,FRISWELL M I.Conceptual study of a morphing winglet based on unsymmetrical stiffness[J].Aerospace Science and Technology, 2016,58:546-558.
[94] [94] ZHANG J Y,WANG C,SHAW A D,et al.Passive energy balancing design for a linear actuated morphing wingtip structure[J].Aerospace Science and Technology, 2020,107:106279.
[95] [95] KACHANOV Y S.Physical mechanisms of laminar-boundary-layer transition[J].Annual Review of Fluid Mechanics,1994,26(1):411-482.
[97] [97] QIU J H,HAN J H,TANI J,et al.Development of electromagnetic actuator with magnetic fluid and elastic membrane for laminar flow control[J].Transactions of the Japan Society of Mechanical Engineers,2000,66(641):146-152.
[98] [98] QIU J H,TANI J,HAYASE T,et al.Suppression of TS wave using wall motion actuator[J].JSME International Journal Series B Fluids and Thermal Engineering,2002,45(1):29-34.
[99] [99] QIU J H,HAYASE T,OKUTANI T.Active control of laminar boundary layer using various wall motions[J].Computers,Materials and Continua,2004,1(4):301-308.
[100] [100] ROBINSON S K.Coherent motions in the turbulent boundary layer[J].Annual Review of Fluid Mechanics,1991,23:601-639.
[101] [101] CANTWELL B J.Organized motion in turbulent flow[J].Annual Review of Fluid Mechanics,1981,13(1):457-515.
[103] [103] JUNG W J,MANGIAVACCHI N,AKHAVAN R.Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations[J].Physics of Fluids A:Fluid Dynamics,1992,4(8):1605-1607.
[104] [104] CHOI H,MOIN P,KIM J.Active turbulence control for drag reduction in wall-bounded flows[J].Journal of Fluid Mechanics,1994,262:75-110.
[105] [105] KANG S,CHOI H.Active wall motions for skin-friction drag reduction[J].Physics of Fluids,2000,12(12):3301-3304.
[106] [106] CHOI J I,XU C X,SUNG H J.Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows[J].AIAA Journal,2002,40(5):842-850.
[107] [107] JODIN G,MOTTA V,SCHELLER J,et al.Dynamics of a hybrid morphing wing with active open loop vibrating trailing edge by time-resolved PIV and force measures[J].Journal of Fluids and Structures,2017,74:263-290.
[108] [108] BARRETT R,FAROKHI S.Subsonic aerodynamics and performance of a smart vortex generator system[J].Journal of Aircraft,1996,33(2):393-398.
[109] [109] IKEDA T,MASUDA S,UEDA T.Smart vortex generator transformed by change in ambient temperature and aerodynamic force[C]//Active and Passive Smart Structures and Integrated Systems.San Diego,CA:SPIE,2007:475-486.
[111] [111] BIRKEMEYER J,ROSEMANN H,STANEWSKY E.Shock control on a swept wing[J].Aerospace Science and Technology,2000,4(3):147-156.
[112] [112] BRUCE P J K,COLLISS S P.Review of research into shock control bumps [J].Shock Waves,2015,25(5).doi:10.1007/s00193-014-0533-4.
[113] [113] STANEWSKY E,DLERY J,FULKER J,et al.EUROSHOCK-drag reduction by passive shock control [M].Wiesbaden:Vieweg+Teubner Verlag,1997.
[114] [114] ASHILL P,FULKER J.A novel technique for controlling shock strength of laminar-flow aerofoil sections [C]//Proceedings 1st European Forum on Laminar Flow Technology.Hamburg:DGLR-AAAF-RaeS,1992:175-183.
[115] [115] MILHOLEN W,OWENS L.On the application of contour bumps for transonic drag reduction[C]//The 43rd AIAA Aerospace Sciences Meeting and Exhibit.Reno, NV:AIAA,2005:462.
[116] [116] EASTWOOD J P,JARRETT J P.Toward designing with three-dimensional bumps for lift/drag improvement and buffet alleviation[J].AIAA Journal,2012,50(12):2882-2898.
[117] [117] JINKS E R,BRUCE P J,SANTER M J.Adaptive shock control bumps[C]//The 52nd Aerospace Sciences Meeting.National Harbor,MD:AIAA,2014.doi:10.2514/6.2014-0945.
[118] [118] POPOV A V,LABIB M,FAYS J,et al.Closed-loop control simulations on a morphing wing [J].Journal of Aircraft,2008,45(5):1794-1803.
[121] [121] ZHANG C,JI H L,CHEN X,et al.Thermomechanical training and structural tests for adaptive SMA bumps with two-way shape memory effect[J].Journal of Intelligent Material Systems and Structures,2022,33(10):1308-1320.
[122] [122] VALLUCHI C,SIPPEL M.Hypersonic morphing for the spaceliner cabin escape system[C]//The 7th European Conference for Aeronautics and Space Sciences(EUCASS).Mailand:EUCASS,2017:1-19.
[123] [123] PHOENIX A A,MAXWELL J R,GOODWIN G B.Morphing high-temperature surfaces for shapeable hypersonic waverider vehicles[C]//ASME 2017 Conference on Smart Materials,Adaptive Structures and Intelligent Systems.Snowbird,UT:ASME,2017.doi:10.1115/SMASIS2017-3766.
[124] [124] LIVNE E,WEISSHAAR T A.Aeroelasticity of nonconventional airplane configurations-past and future[J].Journal of Aircraft,2003,40(6):1047-1065.
[125] [125] SNYDER M P,SANDERS B,EASTEP F E,et al.Vibration and flutter characteristics of a folding wing[J].Journal of Aircraft,2009,46(3):791-799.
[126] [126] OBARA C J,LAMAR J E.Overview of the cranked-arrow wing aerodynamics project international[J].Journal of Aircraft,2009,46(2):355-368.
[127] [127] LIVNE E.Future of airplane aeroelasticity[J].Journal of Aircraft,2003,40(6):1066-1092.
[131] [131] LIU Z,LIU J,DING F,et al.Novel methodology for wide-ranged multistage morphing waverider based on conical theory[J].Acta Astronautica,2017,140:362-369.
[134] [134] BAO C Y,WANG P,TANG G J.Integrated method of guidance,control and morphing for hypersonic morphing vehicle in glide phase[J].Chinese Journal of Aeronautics,2021,34(5):535-553.
Get Citation
Copy Citation Text
ZHANG Jiaying, HUANG Ke, WU Guanzhen, WANG Chen, NIE Rui. Key Technologies and Research Progress of Morphing Aircraft Structure[J]. Electronics Optics & Control, 2024, 31(1): 1
Category:
Received: Jun. 16, 2023
Accepted: --
Published Online: May. 22, 2024
The Author Email: