Acta Optica Sinica, Volume. 43, Issue 20, 2034001(2023)

Denoising Algorithm of Multi-Pinhole Collimated X-Ray Fluorescence CT Based on Noise Level Estimation

Ruge Zhao1, Peng Feng1,2、*, Yan Luo1, Song Zhang1, Peng He1,2, and Yanan Liu3、**
Author Affiliations
  • 1Key Lab of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
  • 2ICT NDT Engineering Research Center, Ministry of Education, Chongqing University, Chongqing 400044, China
  • 3School of Electronics and Information Engineering, Chongqing Technology and Business Institute, Chongqing 400032, China
  • show less
    Figures & Tables(14)
    Schematic diagram of XFCT imaging
    Flow chart of NeCNN denoising algorithm
    Setup of XFCT imaging system
    Two kinds of phantoms. (a) Physical object of PMMA phantom; (b) phantom 1: phantom with high mass fraction; (c) phantom 2: phantom with low mass fraction
    XFCT images from simulation. (a) Noise image; (b) standard image (clean image)
    Denoising results under different noise levels. (a), (e), (i) are original images (testing images), and σa=14.0525, σe=20.7962, and σi=31.7817; (b), (f), (j) are denoising images of NeCNN; (c), (g), (k) are denoising images of DnCNN; (d), (h), (l) are denoising images of BM3D
    Denoising result of PMMA phantom. (a) Testing image; (b) denoising image of NeCNN
    Profile of pixel value distribution with different denoising algorithms. (a) Noise image; (b) denoising image of BM3D; (c) denoising image of NeCNN
    • Table 1. NeCNN hyperparameters

      View table

      Table 1. NeCNN hyperparameters

      HyperparameterValue
      Kernel size3×3
      Resolution420×560
      Num epoch30
      Layer17
      Learning rate0.001
      OptimizerAdam
      Batch size8
      Activation functionReLU
    • Table 2. Dataset parameter settings

      View table

      Table 2. Dataset parameter settings

      PhantomAir phantomPMMA phantom
      Image number400100
      Format.jpg.jpg
      Resolution420×560420×560
      Number of training set32080
      Number of test set8020
    • Table 3. DnCNN parameters

      View table

      Table 3. DnCNN parameters

      ParameterValue
      Kernel size3×3
      Resolution420×560
      Num epoch30
      Layer17
      Learning rate0.001
      OptimizerAdam
      Batch size8
      Activation functionReLU
    • Table 4. BM3D parameters

      View table

      Table 4. BM3D parameters

      ParameterValue
      Size of block20×20
      Number of max matching block16
      Threshold of block-wise similarity(step 1)250000
      Threshold of block-wise similarity(step 2)3600
    • Table 5. Comparison of denoising results with different algorithms

      View table

      Table 5. Comparison of denoising results with different algorithms

      PSNR /dBSSIM
      Original image27.755890.76805
      NeCNN29.015580.95066
      DnCNN28.775650.92332
      BM3D28.395450.80807
    • Table 6. Denoising results of PMMA phantom

      View table

      Table 6. Denoising results of PMMA phantom

      PSNR /dBSSIM
      Original Image30.651510.93161
      NeCNN32.008030.95843
    Tools

    Get Citation

    Copy Citation Text

    Ruge Zhao, Peng Feng, Yan Luo, Song Zhang, Peng He, Yanan Liu. Denoising Algorithm of Multi-Pinhole Collimated X-Ray Fluorescence CT Based on Noise Level Estimation[J]. Acta Optica Sinica, 2023, 43(20): 2034001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: X-Ray Optics

    Received: Mar. 15, 2023

    Accepted: May. 19, 2023

    Published Online: Oct. 23, 2023

    The Author Email: Feng Peng (coe-fp@cqu.edu.cn), Liu Yanan (2030329861@qq.com)

    DOI:10.3788/AOS230679

    Topics