Journal of the Chinese Ceramic Society, Volume. 53, Issue 4, 985(2025)

Thermal Shock Cycling Behavior and Failure Mechanism of GdYb-YSZ/8YSZ Double Ceramic Layer Thermal Barrier Coatings with Different Thickness Ratios

MEI Jiao1, XUE Zhaolu1、*, ZHENG Yue1, YU Haiyuan2, LIU Guanghua3, GONG Xiufang4, SUN Jian3, ZHANG Zhenya1, and ZHANG Shihong1
Author Affiliations
  • 1Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Anhui University of Technology, Maanshan 243002, Anhui, China
  • 2Beijing Beiye Functional Materials Co., Ltd., Beijing 100192, China
  • 3China United Gas Turbine Technology Co., Ltd., Beijing 100015, China
  • 4Dongfang Electric Corporation Dongfang Turbine Co.,LTD, Deyang 618000, Sichuan, China
  • show less
    References(31)

    [1] [1] CAO X Q. Development on New Thermal Barrier Coating Materials[J]. J Chin Ceram Soc, 2020, 48(10): 1622–1635.

    [2] [2] GUO L, HE W T, CHEN W B, et al. Progress on high-temperature protective coatings for aero-engines[J]. Surf Sci Technol, 2023, 1(1): 6.

    [3] [3] LIU B, LIU Y C, ZHU C H, et al. Advances on strategies for searching for next generation thermal barrier coating materials[J]. J Mater Sci Technol, 2019, 35(5): 833–851.

    [4] [4] DAROLIA R. Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects[J]. Int Mater Rev, 2013, 58(6): 315–348.

    [5] [5] WU R T, KAWAGISHI K, HARADA H, et al. The retention of thermal barrier coating systems on single-crystal superalloys: Effects of substrate composition[J]. Acta Mater, 2008, 56(14): 3622–3629.

    [6] [6] WU Y, ZHENG L, HE W T, et al. Effects of Yb3+ doping on phase structure, thermal conductivity and fracture toughness of (Nd1-xYbx)2Zr2O7[J]. Ceram Int, 2019, 45(3): 3133–3139.

    [7] [7] PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566): 280–284.

    [8] [8] VAEN R, BAKAN E, MACK D, et al. Performance of YSZ and Gd2Zr2O7/YSZ double layer thermal barrier coatings in burner rig tests[J]. J Eur Ceram Soc, 2020, 40(2): 480–490.

    [9] [9] WEI Z Y, MENG G H, CHEN L, et al. Progress in ceramic materials and structure design toward advanced thermal barrier coatings[J]. J Adv Ceram, 2022, 11(7): 985–1068.

    [10] [10] GUO L, GUO H B, GONG S K, et al. Improvement on the phase stability, mechanical properties and thermal insulation of Y2O3-stabilized ZrO2 by Gd2O3 and Yb2O3 co-doping[J]. Ceram Int, 2013, 39(8): 9009–9015.

    [11] [11] GUO L, LI M Z, YE F X. Phase stability and thermal conductivity of RE2O3 (RE=La, Nd, Gd, Yb) and Yb2O3 Co-doped Y2O3 stabilized ZrO2 ceramics[J]. Ceram Int, 2016, 42(6): 7360–7365.

    [12] [12] BOBZIN K, ZHAO L D, MEHMET , et al. A highly porous thermal barrier coating based on Gd2O3–Yb2O3 Co-doped YSZ[J]. Surf Coat Technol, 2019, 366: 349–354.

    [13] [13] ZHANG Y H, SUN Y N, TAN X, et al. High temperature stability and sintering resistance of Gd2O3-Yb2O3-Y2O3-ZrO2 (GYYZO) coating[J]. Surf Coat Technol, 2023, 459: 129405.

    [15] [15] JARLIGO M O, MACK D E, VASSEN R, et al. Application of plasma-sprayed complex perovskites as thermal barrier coatings[J]. J Therm Spray Technol, 2009, 18(2): 187–193.

    [16] [16] CHEN S H, XIANG J Y, HUANG J H, et al. Microstructures and properties of double-ceramic-layer thermal barrier coatings of La2(Zr0.7Ce0.3)2O7/8YSZ made by atmospheric plasma spraying[J]. Appl Surf Sci, 2015, 340: 173–181.

    [17] [17] CHENG B, WEI Z Y, CHEN L, et al. Prolong the durability of La2Zr2O7/YSZ TBCs by decreasing the cracking driving force in ceramic coatings[J]. J Eur Ceram Soc, 2018, 38(16): 5482–5488.

    [18] [18] WEI Q L, GUO H B, GONG S K, et al. Novel microstructure of EB-PVD double ceramic layered thermal barrier coatings[J]. Thin Solid Films, 2008, 516(16): 5736–5739.

    [19] [19] XIANG Y, YAN K, YU H Y, et al. Comparative investigation on the hot corrosion failure of YSZ and GdYb-YSZ double-ceramic-layer thermal barrier coatings under Na2SO4+V2O5 molten salts[J]. Ceram Int, 2023, 49(11): 18678–18688.

    [20] [20] SHI T J, BAI B T, PENG H R, et al. Improved thermal shock resistance of GYYZO-YSZ double ceramic layer TBCs induced by induction plasma spheroidization[J]. Surf Coat Technol, 2024, 477: 130372.

    [21] [21] CHEN Z, CUI X F, WANG X, et al. Novel high-entropy (La0.35Gd0.35Y0.35Sm0.35Yb0.6)Zr2O7 thermal barrier coatings: Thermal cycling performance and failure behavior[J]. Ceram Int, 2024, 50(24): 54716–54727.

    [22] [22] WANG Y H, XU Y Y, CHEN M D, et al. Phase stability, thermophysical properties, thermal cycling, and CMAS resistance of 16Ce4YbSZ coating[J]. J Alloys Compd, 2025, 1010: 177538.

    [23] [23] ZHAO K R, HUANG W Z, DENG P H, et al. Mechanical properties, thermal shock resistance and stress evolution of plasma-sprayed 56 wt% Y2O3-stabilized ZrO2 thick thermal barrier coatings[J]. Surf Coat Technol, 2024, 494: 131352.

    [24] [24] XUE Z L, ZHOU L, SHI M C, et al. Preparation and sintering behavior of GdYb-YSZ nanostructured thermal barrier coating[J]. J Mater Res Technol, 2023, 26: 7237–7247.

    [25] [25] MILLER R A, SMIALEK J L, GARLICK R G. Phase stability in plasma-sprayed, partially stabilized zirconia yttria[J]. J Am Ceram Soc, 1981, 3: 241–253.

    [26] [26] KIM D J, SHIN I H, KOO J M, et al. Failure mechanisms of coin-type plasma-sprayed thermal barrier coatings with thermal fatigue[J]. Surf Coat Technol, 2010, 205: S451–S458.

    [27] [27] MAO W G, CHEN Q, DAI C Y, et al. Effects of piezo-spectroscopic coefficients of 8wt.% Y2O3 stabilized ZrO2 on residual stress measurement of thermal barrier coatings by Raman spectroscopy[J]. Surf Coat Technol, 2010, 204(21/22): 3573–3577.

    [28] [28] TANAKA M, HASEGAWA M, DERICIOGLU A F, et al. Measurement of residual stress in air plasma-sprayed Y2O3–ZrO2 thermal barrier coating system using micro-Raman spectroscopy[J]. Mater Sci Eng A, 2006, 419(1/2): 262–268.

    [29] [29] LEE G, ATKINSON A, SELUK A. Development of residual stress and damage in thermal barrier coatings[J]. Surf Coat Technol, 2006, 201(7): 3931–3936.

    [30] [30] SELCUK A, ATKINSON A. Analysis of the Cr3+ luminescence spectra from thermally grown oxide in thermal barrier coatings[J]. Mater Sci Eng A, 2002, 335(1/2): 147–156.

    [31] [31] WU F, JORDAN E H, MA X, et al. Thermally grown oxide growth behavior and spallation lives of solution precursor plasma spray thermal barrier coatings[J]. Surf Coat Technol, 2008, 202(9): 1628–1635.

    [32] [32] YAO Y M, CAI J, GAO J, et al. Thermal cycling behavior and stress distribution in TGO layer of MCrAlYX-type coatingsviahigh-current pulsed electron beam modification[J]. Appl Surf Sci, 2022, 605: 154674.

    Tools

    Get Citation

    Copy Citation Text

    MEI Jiao, XUE Zhaolu, ZHENG Yue, YU Haiyuan, LIU Guanghua, GONG Xiufang, SUN Jian, ZHANG Zhenya, ZHANG Shihong. Thermal Shock Cycling Behavior and Failure Mechanism of GdYb-YSZ/8YSZ Double Ceramic Layer Thermal Barrier Coatings with Different Thickness Ratios[J]. Journal of the Chinese Ceramic Society, 2025, 53(4): 985

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 29, 2024

    Accepted: May. 29, 2025

    Published Online: May. 29, 2025

    The Author Email: XUE Zhaolu (zhaoluxue@163.com)

    DOI:10.14062/j.issn.0454-5648.20240684

    Topics