Journal of the Chinese Ceramic Society, Volume. 50, Issue 5, 1447(2022)
Research Progress on Preparation and Application of Flexible Stress/Strain Sensors Based on Two-Dimensional Ti3C2 MXene
[1] [1] HAN S T, PENG H Y, SUN Q J, et al. An overview of the development of flexible sensors[J]. Adv Mater, 2017, 29(33): 1700375.
[2] [2] XU F L, LI X Y, SHI Y, et al. Recent developments for flexible pressure sensors: a review[J]. Micromachines, 2018, 9(11): 580.
[3] [3] AMJADI M, KYUNG K U, PARK I K, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review[J]. Adv Funct Mater, 2016, 26(11): 1678-1698.
[4] [4] YAN J F, MA Y N, LI X X, et al. Flexible and high-sensitivity piezoresistive sensor based on MXene composite with wrinkle structure[J]. Ceram Int, 2020, 46(15): 23592-23598.
[6] [6] YANG Y, GAO W. Wearable and flexible electronics for continuous molecular monitoring[J]. Chem Soc Rev, 2019, 48(6): 1465-1491.
[7] [7] DARABI A M, KHOSROZADEH A, MBELECK R, et al. Skin-Inspired multifunctional autonomic-intrinsic conductive self- healing hydrogels with pressure sensitivity, stretchability, and 3D printability[J]. Adv Mater, 2018, 30(4): 1705922.
[8] [8] LEE Y, PARK J, CHOE A, et al. Mimicking human and biological skins for multifunctional skin electronics[J]. Adv Funct Mater, 2020, 30(20): 1904523.
[9] [9] YUAN Y, LEI T M, QIN Y, et al. Flexible electronic skins based on piezoelectric nanogenerators and piezotronics[J]. Nano Energy, 2019, 59: 84-90.
[11] [11] JIAN M Q, WANG C, WANG Q, et al. Advanced carbon materials for flexible and wearable sensors[J]. Sci China Mater, 2017, 60(11): 1026-1062.
[12] [12] AMJADI M, PICHITPAJONGKIT A, LEE S, et al. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite[J]. ACS Nano, 2014, 8(5): 5154-5163.
[13] [13] NUR R, MATSUHISA N, JIANG Z, et al. A highly sensitive capacitive-type strain sensor using wrinkled ultrathin gold films[J]. Nano Lett, 2018, 18(9): 5610-5617.
[14] [14] LEE J, PYO S, KWON D S, et al. Ultrasensitive strain sensor based on separation of overlapped carbon nanotubes[J]. Small, 2019, 15(12): 1805120.
[15] [15] WANG Y M, WANG Y, YANG Y, et al. Graphene-polymer nanocomposite-based redox-induced electricity for flexible self-powered strain sensors[J]. Adv Energy Mater, 2018, 8(22): 1800961.
[16] [16] SOBOLCIAK P, ALI A, K.HASSAN M, et al. 2D Ti3C2Tx (MXene)- reinforced polyvinyl alcohol (PVA) nanofibers with enhanced mechanical and electrical properties[J]. PLoS One, 2017, 12(8): 0183705.
[20] [20] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Adv Mater, 2011, 23(37): 4248-4253.
[22] [22] CHAO M Y, WANG Y G, MA D, et al. Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchical microstructure for broad-range ultrasensitive sensing[J]. Nano Energy, 2020, 78: 105187.
[23] [23] GUO Q Q, ZHANG X X, ZHAO F Y, et al. Protein inspired self-healable Ti3C2 MXenes/rubber-based supramolecular elastomer for intelligent sensing[J]. ACS Nano, 2020, 14(3): 2557-2560.
[24] [24] FANG F Y, WANG H, WANG H Q, et al. Stretchable MXene/ thermoplastic polyurethanes based strain sensor fabricated using a combined electrospinning and electrostatic spray deposition technique[J]. Micromachines, 2021, 12(3): 252-263.
[25] [25] LI Y, MENG F B, MEI Y, et al. 391[J]. Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption[J]. Chem Eng J, 2019, 391: 123512.
[26] [26] SHARMA D, CHHETRY A, KO S, et al. Highly sensitive and stable pressure sensor based on polymer-Mxene composite nanofiber mat for wearable health monitoring[C]. 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS), Vancouver, Canada, 2020: 810-813.
[27] [27] ZHOU H, WANG Y W, WANG F Q, et al. Water permeability in MXene membranes: process matters[J]. Chin Chem Lett, 2020, 31(6): 1665-1669.
[28] [28] LI Y, TIAN X, GAO S P, et al. Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication[J]. Adv Funct Mater, 2020, 30(5): 1907451.
[29] [29] YANG Y N, SHI L J, CAO Z R, et al. Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx (MXene) nanoparticle-nanosheet hybrid network[J]. Adv Funct Mater, 2019, 29(14): 1807882.
[30] [30] LI F, LIU Y L, WANG G G, et al. Few-layered Ti3C2Tx MXenes coupled with Fe2O3 nanorod arrays grown on carbon cloth as anodes for flexible asymmetric supercapacitors[J]. J Mater Chem A, 2019, 7(39): 22631-22641.
[31] [31] YUE Y, LIU N S, LIU W J, et al. 3D hybrid porous MXene-sponge network and its application in piezoresistive sensor[J]. Nano Energy, 2018, 50: 79-87.
[32] [32] ABDOLHOSSEINZADEH S, SCHNEIDER R, VERMA V, et al. Turning trash into treasure: additive free MXene sediment inks for screen-printed micro-supercapacitors[J]. Adv Mater, 2020, 32(17): 2000716.
[33] [33] SHI X L, WANG H K, XIE X T, et al. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale "brick-and-mortar" architecture[J]. ACS Nano, 2019, 13(1): 649-659.
[34] [34] WAMG N N, WANG H, WANG Y L, et al. Robust, lightweight, hydrophobic and fire retarded polyimide/MXene aerogels for effective oil/water separation[J]. ACS Appl Mater Inter, 2019, 11(43): 40512-40523.
[35] [35] HU Y J, ZHOU H, LUO Q S, et al. Biomass polymer-assisted fabrication of aerogels from MXenes with ultrahigh compression elasticity ang pressure sensitivity[J]. J Mater Chem A, 2019, 7(14): 8092-8100.
[36] [36] PI M H, JIANG L C, WANG Z S, et al. Robust and ultrasensitive hydrogel sensors enhanced by MXene/cellulose nanocrystals[J]. J Mater Sci, 2021, 56(14): 8871-8886.
[37] [37] LU Y, QU X Y, ZHAO W, et al. Highly stretchable, elastic, and sensitive MXene-based hydrogel for flexible strain and pressure sensors[J]. Research, 2020, DOI:10.34133/2020/2038560.
[38] [38] YANG K, YIN F X, XIA D, et al. A highly flexible and multifunctional strain sensor based on a network-structured MXene/ polyurethane mat with ultra-high sensitivity and a broad sensing range[J]. Nanoscale, 2019, 11(20): 9949-9957.
[39] [39] MA Y N, LIU N S, LI L Y, et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances[J]. Nat Commun, 2017, 8(1): 1207-1215.
[40] [40] CAO W T, CHEN F F, ZHU Y J, et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties[J]. ACS Nano, 2018, 12(5): 4583-4593.
[41] [41] JUNG S, KIM J H, KIM J, et al. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces[J]. Adv Mater, 2014, 26(28): 4825-4830.
[42] [42] JEONG Y R, PARK H, JIN S W, et al. Highly stretchable and sensitive strain sensors using fragmentized graphene foam[J]. Adv Funct Mater, 2015, 25(27): 4228-4236.
[43] [43] HAN J W, KIM B, LI J, et al. Flexible, compressible, hydrophobic, floatable, and conductive carbon nanotube-polymer sponge[J]. Appl Phys Lett, 2013, 102(5): 1307-1315.
[44] [44] LI X P, LI Y, LI X P, et al. Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets[J]. J Colloid Interf Sci, 2019, 542(15): 54-62.
[45] [45] WANG L, ZHANG M Y, YANG B, et al. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/ Ti3AlC2 MXene composite aerogel for sensitive pressure sensor[J]. ACS Nano, 2020, 14(8): 10633-10647.
[46] [46] LIU J, ZHANG H B, XIE X, et al. Multifunctional, superelastic, and lightweight MXene/polyimide aerogels[J]. Small, 2018, 14(45): 1802479.
[47] [47] LIU H, CHEN X Y, ZHENG Y J, et al. Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications[J]. Adv Func Mater, 2021, 31(13): 2008006.
[48] [48] ZHANG J Q, WAN L J, GAO Y, et al. Highly stretchable and self-healable MXene/polyvinyl alcohol hydrogel electrode for wearable capacitive electronic skin[J]. Adv Electron Mater, 2019, 5(7): 1900285.
[49] [49] ZHANG Y Z, LEE K H, H.ANJUM D, et al. MXenes stretch hydrogel sensor performance to new limits[J]. Sci Adv, 2018, 4(6): eaat0098.
Get Citation
Copy Citation Text
YUAN Wenfeng, WANG Junkai, XIA Qixun, ZHOU Aiguo. Research Progress on Preparation and Application of Flexible Stress/Strain Sensors Based on Two-Dimensional Ti3C2 MXene[J]. Journal of the Chinese Ceramic Society, 2022, 50(5): 1447
Category:
Received: May. 13, 2021
Accepted: --
Published Online: Nov. 23, 2022
The Author Email: YUAN Wenfeng (ywf3507@163.com)
CSTR:32186.14.