Acta Photonica Sinica, Volume. 50, Issue 9, 0904002(2021)
Multistage Photosynaptic Transistor Based on the Regulation of Ferroelectric P(VDF-TrFE)
[1] ZIDAN M A, STRACHAN J P, LU W D. The future of electronics based on memristive systems[J]. Nature Electronics, 1, 22-29(2018).
[2] WANG Zhongrui, JOSHI S, SAVEL'EV S E et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing[J]. Nature Materials, 16, 101-108(2017).
[3] CHOI S, TAN S H, LI Zefan et al. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations[J]. Nature Materials, 17, 335-340(2018).
[4] PREZIOSO M, MERRIKH-BAYAT F, HOSKINS B D et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors[J]. Nature, 521, 61-64(2015).
[5] CHANG T, EBONG I et al. Nanoscale memristor device as synapse in neuromorphic systems[J]. Nano Letters, 10, 1297-1301(2010).
[6] FULLER E J, GABALY F E, LEONARD F et al. Li-ion synaptic transistor for low power analog computing[J]. Advanced Materials, 29, 1604310(2017).
[7] ESQUEDA I S, YAN Xiaodong, RUTHERGLEN C et al. Aligned carbon nanotube synaptic transistors for large-scale neuromorphic computing[J]. ACS Nano, 12, 7352-7361(2018).
[8] SHARBATI M T, DU Yanhao, TORRES J et al. Low-power, electrochemically tunable graphene synapses for neuromorphic computing[J]. Advanced Materials, 30, 1802353(2018).
[9] YAN Xiaobin, ZHAO Jianhui, LIU Sen et al. Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing[J]. Advanced Functional Materials, 28, 1705320(2018).
[10] KIM M K, LEE J S. Ferroelectric analog synaptic transistors[J]. Nano Letters, 19, 2044-2050(2019).
[11] ZHAO Lei, FAN Zhen, CHENG Shengliang et al. An artificial optoelectronic synapse based on a photoelectric memcapacitor[J]. Advanced Electronic Materials, 6, 1900858(2019).
[12] LI Bang, WEI Wei, YAN Xin et al. Mimicking synaptic functionality with an InAs nanowire phototransistor[J]. Nanotechnology, 29, 464004(2018).
[13] SHI Chenyang, LAN Jinling, WANG Jingjuan et al. Flexible and insoluble artificial synapses based on chemical cross‐linked wool keratin[J]. Advanced Functional Materials, 30, 2002882(2020).
[14] BERCO D. Rectifying resistive memory devices as dynamic complementary artificial synapses[J]. Frontiers in Neuroscience, 12, 755(2018).
[15] KUZUM D, JEYASINGH R G, LEE B et al. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing[J]. Nano Letters, 12, 2179-2186(2012).
[16] AGNUS G, ZHAO Weisheng, DERYCKE V et al. Two-terminal carbon nanotube programmable devices for adaptive architectures[J]. Advanced Materials, 22, 702-706(2010).
[17] SHAO Lin, WANG Hailu, YANG Yi et al. Optoelectronic properties of printed photogating carbon nanotube thin film transistors and their application for light-stimulated neuromorphic devices[J]. ACS Applied Materials Interfaces, 11, 12161-12169(2019).
[18] YANG Yi, HE Yongli, NIE S et al. Light stimulated IGZO-based electric-double-layer transistors for photoelectric neuromorphic devices[J]. IEEE Electron Device Letters, 39, 897-900(2018).
[19] KWON S M, CHO S W, KIM M et al. Environment-adaptable artificial visual perception behaviors using a light-adjustable optoelectronic neuromorphic device array[J]. Advanced Materials, 31, 1906433(2019).
[20] WANG Kai, DAI Shilei, ZHAO Yiwei et al. Light-stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors[J]. Small, 15, 1900010(2019).
[21] AHMED T, KURIAKOSE S, MAYES E L H et al. Optically stimulated artificial synapse based on layered black phosphorus[J]. Small, 15, 1900966(2019).
[22] SEO S, KIM S et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition[J]. Nature Communications, 9, 5106(2018).
[23] SUN Yilin, QIAN Liu, XIE Dan et al. Photoelectric synaptic plasticity realized by 2D perovskite[J]. Advanced Functional Materials, 29, 1902538(2019).
[24] KIM M K, LEE J S. Synergistic improvement of long-term plasticity in photonic synapses using ferroelectric polarization in hafnia-based oxide-semiconductor transistors[J]. Advanced Materials, 32, 1907826(2020).
[25] ZHANG Chen, YE Wenbin, ZHOU Kui et al. Bioinspired artificial sensory nerve based on nafion memristor[J]. Advanced Functional Materials, 29, 1808783(2019).
[26] WU Xiaofeng, JIA Ruofei, Jiansheng JIE et al. Air effect on the ideality of p‐type organic field‐effect transistors: a double‐edged sword[J]. Advanced Functional Materials, 29, 1906653(2019).
[27] HE Yongli, YANG Yi, NIE Sha et al. Electric-double-layer transistors for synaptic devices and neuromorphic systems[J]. Journal of Materials Chemistry C, 6, 5336-5352(2018).
[28] BORNSCHEIN G, ARENDT O, HALLERMANN S et al. Paired-pulse facilitation at recurrent Purkinje neuron synapses is independent of calbindin and parvalbumin during high-frequency activation[J]. Journal of Physiology-London, 591, 3355-3370(2013).
Get Citation
Copy Citation Text
Lihua HE, Enlong LI, Rengjian YU, Huipeng CHEN, Guocheng ZHANG. Multistage Photosynaptic Transistor Based on the Regulation of Ferroelectric P(VDF-TrFE)[J]. Acta Photonica Sinica, 2021, 50(9): 0904002
Category: Detectors
Received: Feb. 5, 2021
Accepted: Mar. 25, 2021
Published Online: Oct. 22, 2021
The Author Email: Huipeng CHEN (hpchen@fzu.edu.cn), Guocheng ZHANG (zgc@fjut.edu.cn)