Chinese Optics, Volume. 15, Issue 1, 56(2022)

Risley-prism inverse algorithm based on equivalent vector model

Jian-xin FENG*, Qiang WANG, Ya-lei WANG, and Biao XU
Author Affiliations
  • Academy of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • show less
    Figures & Tables(16)
    Schematic diagram of the coordinate system of Risley-prism
    Light path diagram of light refraction at the interface
    Single rotating Risley-prism optical path
    Equivalent vector model of the rotary single prism
    Equivalent vector model of the Risley-prism
    Flow chart of two step inverse method
    Flow chart of the equivalent vector iteration method
    (a) Target trajectory and scanning trajectory and (b) rotation angle of prism for two-step method
    (a) Target trajectory and scanning trajectory and (b) rotation angle of prism for equivalent vector two-step method
    (a) Target trajectory and scanning trajectory and (b) rotation angle of prism for forward iterative refinement algorithm
    (a) Target trajectory and scanning trajectory and (b) rotation angle of prism for equivalent vector iteration method
    Influence of D2 on two algorithms. (a) Forward iteration method; (b) equivalent vector iteration method
    Influence of angle of view on (a) forward interative refinement algorithm and (b) equivalent vector iteration method
    Experimental device
    • Table 1. Comparison of the results of four inverse algorithms

      View table
      View in Article

      Table 1. Comparison of the results of four inverse algorithms

      名称最小误差 /mm 最大误差 /mm 平均误差 /mm 计算 时间/s
      两步法0.03910.41290.10310.008464
      等效矢量两步算法0.040650.53660.24560.007889
      正演迭代算法2.8114×10−58.5770×10−41.1093×10−40.346347
      等效矢量迭代 算法 4.1163×10−71.5946×10−67.3820×10−70.035116
    • Table 2. Comparison of the results of two inverse algorithms

      View table
      View in Article

      Table 2. Comparison of the results of two inverse algorithms

      名称目标点位置扫描点位置误差 /mm时钟周期计算时间/ms
      正演迭代算法(3.063254, 2.025168)(3.062726, 2.024727)6.880 $\times {10^{ - 3} }$5613073.702
      (−0.7943821, 2.657489)(−​​​​​​​0.7942457, 2.656589)9.103 $\times {10^{ - 4} }$5443413.631
      (1.368747, −​​​​​​​0.765749)(1.369308, −​​​​​​​0.766287)7.776 $\times {10^{ -4} }$5407863.607
      (−4.084592, −​​​​​​​​​​​​​​3.019157)(−4.083504, −​​​​​​​​​​​​​​3.018215)1.439 $\times {10^{ - 3} }$5407863.667
      等效矢量迭代法(3.063254, 2.025168)(3.063266, 2.025181)1.772 $\times {10^{ - 5} }$133530.08906
      (−0.7943821, 2.657489)(−0.7943828, 2.657509)1.980 $\times {10^{ - 5} }$133440.08900
      (1.368747, −0.765749,)(1.368718, −0.765717)4.258 $\times {10^{ - 5} }$138170.09216
      (−4.084592, −3.019157)(−4.084604, −3.019171)1.875 $\times {10^{ - 5} }$134310.08906
    Tools

    Get Citation

    Copy Citation Text

    Jian-xin FENG, Qiang WANG, Ya-lei WANG, Biao XU. Risley-prism inverse algorithm based on equivalent vector model[J]. Chinese Optics, 2022, 15(1): 56

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Original Article

    Received: May. 29, 2021

    Accepted: --

    Published Online: Jul. 27, 2022

    The Author Email:

    DOI:10.37188/CO.2021-0117

    Topics