Chinese Optics Letters, Volume. 21, Issue 3, 031901(2023)
Characteristic extraction of soliton dynamics based on convolutional autoencoder neural network
[1] D. R. Solli, B. Jalali. Analog optical computing. Nat. Photonics, 9, 704(2015).
[2] P. Grelu, N. Akhmediev. Dissipative solitons for mode-locked lasers. Nat. Photonics, 6, 84(2012).
[3] R. Weill, A. Bekker, V. Smulakovsky, B. Fischer, O. Gat. Noise-mediated Casimir-like pulse interaction mechanism in lasers. Optica, 3, 189(2016).
[4] E. Ding, S. Lefrancois, J. N. Kutz, F. W. Wise. Scaling fiber lasers to large mode area: an investigation of passive mode-locking using a multi-mode fiber. IEEE J. Quantum Electron., 47, 597(2011).
[5] K. J. Zhao, C. X. Gao, X. S. Xiao, C. X. Yang. Real-time collision dynamics of vector solitons in a fiber laser. Photonics Res., 9, 289(2021).
[6] J. He, P. Wang, R. He, C. Liu, M. Zhou, Y. Liu, Y. Yue, B. Liu, D. Xing, K. Zhu, K. Chang, Z. Wang. Elastic and inelastic collision dynamics between soliton molecules and a single soliton. Opt. Express, 30, 14218(2022).
[7] J. S. Peng, H. P. Zeng. Build-up of dissipative optical soliton molecules via diverse soliton interactions. Laser Photonics Rev., 12, 1800009(2018).
[8] X. M. Liu, X. K. Yao, Y. D. Cui. Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett., 121, 023905(2018).
[9] Y. Q. Du, C. Zeng, Z. W. He, Q. Gao, D. Mao. Coherent dissipative soliton intermittency in ultrafast fiber lasers. Chin. Opt. Lett., 20, 011401(2022).
[10] M. Suzuki, O. Boyraz, H. Asghari, P. Trinh, H. Kuroda, B. Jalali. Spectral periodicity in soliton explosions on a broadband mode-locked Yb fiber laser using time-stretch spectroscopy. Opt. Lett., 43, 1862(2018).
[11] L. Salmela, N. Tsipinakis, A. Foi, C. Billet, J. M. Dudley, G. Genty. Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network. Nat. Mach. Intell., 3, 344(2021).
[12] M. Narhi, L. Salmela, J. Toivonen, C. Billet, J. M. Dudley, G. Genty. Machine learning analysis of extreme events in optical fibre modulation instability. Nat. Commun., 9, 4923(2018).
[13] T. Zahavy, A. Dikopoltsev, D. Moss, G. I. Haham, O. Cohen, S. Mannor, M. Segev. Deep learning reconstruction of ultrashort pulses. Optica, 5, 666(2018).
[14] J. Y. He, C. Y. Li, P. Wang, C. C. Liu, Y. G. Liu, B. Liu, D. K. Xing, Z. Wang. soliton molecule dynamics evolution prediction based on LSTM neural networks. IEEE Photon. Technol. Lett., 34, 193(2022).
[15] P. Y. Lu, S. Kim, M. Soljacic. Extracting interpretable physical parameters from spatiotemporal systems using unsupervised learning. Phys. Rev. X, 10, 031056(2020).
[16] R. Guidotti, A. Monreale, S. Ruggieri, F. Turin, F. Giannotti, D. Pedreschi. A survey of methods for explaining black box models. ACM Comput. Surv., 51, 1(2019).
[17] G. Genty, L. Salmela, J. M. Dudley, D. Brunner, A. Kokhanovskiy, S. Kobtsev, S. K. Turitsyn. Machine learning and applications in ultrafast photonics. Nat. Photonics, 15, 91(2021).
[18] X. Wei, J. C. Jing, Y. Shen, L. V. Wang. Harnessing a multi-dimensional fibre laser using genetic wavefront shaping. Light Sci. Appl., 9, 149(2020).
[19] G. Pu, L. Yi, L. Zhang, C. Luo, Z. Li, W. Hu. Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted real-time spectral analysis. Light Sci. Appl., 9, 13(2020).
[20] A. J. Linot, M. D. Graham. Deep learning to discover and predict dynamics on an inertial manifold. Phys. Rev. E, 101, 062209(2020).
[21] C. Y. Li, J. Y. He, R. J. He, Y. E. Liu, Y. Yue, W. W. Liu, L. H. Zhang, L. F. Zhu, M. J. Zhou, K. Y. Zhu, Z. Wang. Analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasers. APL Photonics, 5, 116101(2020).
[22] G. E. Hinton, R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313, 504(2006).
[23] R. Iten, T. Metger, H. Wilming, L. del Rio. Discovering physical concepts with neural networks. Phys. Rev. Lett., 124, 010508(2020).
[24] X. Ding, H. Chate, P. Cvitanovic, E. Siminos, K. A. Takeuchi. Estimating the dimension of an inertial manifold from unstable periodic orbits. Phys. Rev. Lett., 117, 024101(2016).
[25] M. Raissi, G. E. Karniadakis. Hidden physics models: machine learning of nonlinear partial differential equations. J. Comput. Phys., 357, 125(2018).
[26] B. Lusch, J. N. Kutz, S. L. Brunton. Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun., 9, 4950(2018).
[27] P. R. Vlachas, G. Arampatzis, C. Uhler, P. Koumoutsakos. Multiscale simulations of complex systems by learning their effective dynamics. Nat. Mach. Intell., 4, 359(2022).
[28] S. H. Rudy, S. L. Brunton, J. L. Proctor, J. N. Kutz. Data-driven discovery of partial differential equations. Sci. Adv., 3, e1602614(2017).
[29] R. He, J. He, C. Li, L. Zhang, L. Zhu, M. Zhou, K. Zhu, Y. Liu, Y. Yue, Z. Wang. Transition between optical turbulence and dissipative solitons in a complex Ginzburg-Landau equation with quasi-CW noise. Phys. Rev. A, 103, 043515(2021).
[30] M. J. Ablowitz, T. P. Horikis, S. D. Nixon. Soliton strings and interactions in mode-locked lasers. Opt. Commun., 282, 4127(2009).
[31] R. He, Z. Wang, Y. Liu, Z. Wang, H. Liang, S. Han, J. He. Dynamic evolution of pulsating solitons in a dissipative system with the gain saturation effect. Opt. Express, 26, 33116(2018).
Get Citation
Copy Citation Text
Congcong Liu, Jiangyong He, Pan Wang, Dengke Xing, Jin Li, Yange Liu, Zhi Wang, "Characteristic extraction of soliton dynamics based on convolutional autoencoder neural network," Chin. Opt. Lett. 21, 031901 (2023)
Category: Nonlinear Optics
Received: Jul. 8, 2022
Accepted: Sep. 20, 2022
Posted: Sep. 21, 2022
Published Online: Nov. 7, 2022
The Author Email: Jiangyong He (jiangyonghe@nankai.edu.cn), Zhi Wang (zhiwang@nankai.edu.cn)