Journal of Synthetic Crystals, Volume. 53, Issue 1, 38(2024)
Interface Defects of Perovskite Solar Cells and Their Suppression Methods
[1] [1] NATIONAL renewable energy laboratory. Best research-cell effciencies[EB/OL].[2023-04-20].http://www.nrel.gov/ pv/assets/pdfs/cell-pv-eff-emergingpv-rev211214.pdf.
[2] [2] HUANG J, SHAO Y, DONG Q. Organometal trihalide perovskite single crystals: a next wave of materials for 25% efficiency photovoltaics and applications beyond?[J]. The Journal of Physical Chemistry Letters, 2015, 6(16): 3218-3227.
[3] [3] HUANG J, YUAN Y, SHAO Y, et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications[J]. Nature Reviews Materials, 2017, 2(7): 17042.
[4] [4] WERNER J, WALTER A, RUCAVADO E, et al. Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells[J]. Applied Physics Letters, 2016, 109(23): 233902.
[5] [5] ANARAKI E H, KERMANPUR A, STEIER L, et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide[J]. Energy & Environmental Science, 2016, 9(10): 3128-3134.
[6] [6] BUSH K A, PALMSTROM A F, YU Z J, et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability[J]. Nature Energy, 2017, 2(4): 17009.
[7] [7] SAHLI F, WERNER J, KAMINO B A, et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency[J]. Nature Materials, 2018, 17(9): 820-826.
[8] [8] YU Z, LEILAEIOUN M, HOLMAN Z. Selecting tandem partners for silicon solar cells[J]. Nature Energy, 2016, 1(11): 16137.
[9] [9] EPERON G E, LEIJTENS T, BUSH K A, et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps[J]. Science, 2016, 354(6314): 861-865.
[10] [10] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3): 510-519.
[11] [11] AGIORGOUSIS M L, SUN Y Y, ZENG H, et al. Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3[J]. Journal of the American Chemical Society, 2014, 136(41): 14570-14575.
[12] [12] YIN W, SHI T, YAN Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber[J]. Applied Physics Letters, 2014, 104(6): 063903.
[13] [13] STEIRER K X, SCHULZ P, TEETER G, et al. Defect tolerance in methylammonium lead triiodide perovskite[J]. ACS Energy Letters, 2016, 1(2): 360-366.
[14] [14] WALSH A, SCANLON D O, CHEN S, et al. Self-regulation mechanism for charged point defects in hybrid halide perovskites[J]. Angewandte Chemie, 2015, 127(6): 1811-1814.
[15] [15] KIM J, LEE S H, LEE J H, et al. The role of intrinsic defects in methylammonium lead iodide perovskite[J]. The Journal of Physical Chemistry Letters, 2014, 5(8): 1312-1317.
[16] [16] BALL M J, PETROZZA A. Defects in perovskite-halides and their effects in solar cells[J]. Nature Energy, 2016, 1(11): 16149.
[17] [17] STRANKS S D. Nonradiative losses in metal halide perovskites[J]. ACS Energy Letters, 2017, 2(7): 1515-1525.
[18] [18] PAZOS L, XIAO T P, YABLONOVITCH E. Fundamental efficiency limit of lead iodide perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2018, 9(7): 1703-1711.
[19] [19] TRESS W, MARINOVA N, INGANS O, et al. Predicting the open-circuit voltage of CH3NH3PbI3 Perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination[J]. Advanced Energy Materials, 2015, 5(3): 1400812.
[20] [20] SHAO Y, XIAO Z, BI C, et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells[J]. Nature Communications, 2014, 5: 5784.
[21] [21] ABATE A, SALIBA M, HOLLMAN D J, et al. Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells[J]. Nano Letters, 2014, 14(6): 3247-3254.
[22] [22] SHOCKLEY W, READ W T. Statistics of the recombinations of holes and electrons[J]. Physical Review, 1952, 87(5): 835-842.
[23] [23] CAO Y, GAO F, XIANG L, et al. Defects passivation strategy for efficient and stable perovskite solar cells[J]. Advanced Materials Interfaces, 2022, 9(21): 2200179.
[24] [24] TRESS W, MARINOVA N, MOEHL T, et al. Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field[J]. Energy & Environmental Science, 2015, 8(3): 995-1004.
[25] [25] CHEN B, YANG M, PRIYA S, et al. Origin of J-V hysteresis in perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2016, 7(5): 905-917.
[26] [26] AZPIROZ J M, MOSCONI E, BISQUERT J, et al. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation[J]. Energy & Environmental Science, 2015, 8(7): 2118-2127.
[27] [27] EAMES C, FROST J M, BARNES P R F, et al. Ionic transport in hybrid lead iodide perovskite solar cells[J]. Nature Communications, 2015, 6: 7497.
[28] [28] YUAN Y, HUANG J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability[J]. Accounts of Chemical Research, 2016, 49(2): 286-293.
[29] [29] XING J, WANG Q, DONG Q, et al. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals[J]. Physical Chemistry Chemical Physics: PCCP, 2016, 18(44): 30484-30490.
[30] [30] KANG D H, PARK N G. On the current-voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis[J]. Advanced Materials, 2019, 31(34): 1805214.
[31] [31] HOKE E T, SLOTCAVAGE D J, DOHNER E R, et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics[J]. Chemical Science, 2015, 6(1): 613-617.
[32] [32] BISCHAK C G, HETHERINGTON C L, WU H, et al. Origin of reversible photoinduced phase separation in hybrid perovskites[J]. Nano Letters, 2017, 17(2): 1028-1033.
[33] [33] SHEN H, OMELCHENKO S T, JACOBS D A, et al. In situ recombination junction between p-Si and TiO2 enables high-efficiency monolithic perovskite/Si tandem cells[J]. Science Advances, 2018, 4(12): eaau9711.
[34] [34] KIM H S, SEO J Y, PARK N G. Material and device stability in perovskite solar cells[J]. ChemSusChem, 2016, 9(18): 2528-2540.
[35] [35] AHN N, SON D Y, JANG I H, et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide[J]. Journal of the American Chemical Society, 2015, 137(27): 8696-8699.
[36] [36] ZHANG F, XIAO C, CHEN X, et al. Self-seeding growth for perovskite solar cells with enhanced stability[J]. Joule, 2019, 3(6): 1452-1463.
[37] [37] FORTUNATO E, GINLEY D, HOSONO H, et al. Transparent conducting oxides for photovoltaics[J]. MRS Bulletin, 2007, 32(3): 242-247.
[38] [38] TAYLOR M P, READEY D W, VAN HEST M F A M, et al. The remarkable thermal stability of amorphous In-Zn-O transparent conductors[J]. Advanced Functional Materials, 2008, 18(20): 3169-3178.
[39] [39] DOU B, MILLER E M, CHRISTIANS J A, et al. High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO[J]. The Journal of Physical Chemistry Letters, 2017, 8(19): 4960-4966.
[40] [40] BOSCARINO S, CRUPI I, MIRABELLA S, et al. TCO/Ag/TCO transparent electrodes for solar cells application[J]. Applied Physics A, 2014, 116(3): 1287-1291.
[41] [41] TORRISI G, CAVALIERE E, BANFI F, et al. Ag cluster beam deposition for TCO/Ag/TCO multilayer[J]. Solar Energy Materials and Solar Cells, 2019, 199: 114-121.
[42] [42] BAI S, GUO X, CHEN T, et al. Solution process fabrication of silver nanowire composite transparent conductive films with tunable work function[J]. Thin Solid Films, 2020, 709: 138096.
[43] [43] ZHOU H, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196): 542-546.
[44] [44] MA J, YANG G, QIN M, et al. MgO nanoparticle modified anode for highly efficient SnO2-based planar perovskite solar cells[J]. Advanced Science, 2017, 4(9): 1700031.
[45] [45] ALTINKAYA C, AYDIN E, UGUR E, et al. Tin oxide electron-selective layers for efficient, stable, and scalable perovskite solar cells[J]. Advanced Materials, 2021, 33(15): 2005504.
[46] [46] SEOK S I, GRTZEL M, PARK N G. Methodologies toward highly efficient perovskite solar cells[J]. Small, 2018, 14(20): 1704177.
[47] [47] LEIJTENS T, EPERON G E, PATHAK S, et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells[J]. Nature Communications, 2013, 4: 2885.
[48] [48] LEE S W, KIM S, BAE S, et al. Enhanced UV stability of perovskite solar cells with a SrO interlayer[J]. Organic Electronics, 2018, 63: 343-348.
[49] [49] ZAKY A A, CHRISTOPOULOS E, GKINI K, et al. Enhancing efficiency and decreasing photocatalytic degradation of perovskite solar cells using a hydrophobic copper-modified titania electron transport layer[J]. Applied Catalysis B: Environmental, 2021, 284: 119714.
[50] [50] SIRIPRAPARAT A, PONCHAI J, KANJANABOOS P, et al. Efficiency enhancement of perovskite solar cells by using Ag- or Ag-Cu composite-doped surface passivation of the electron transport layer[J]. Applied Surface Science, 2021, 562: 150147.
[51] [51] LIU X, WU J, LI G, et al. Defect control strategy by bifunctional thioacetamide at low temperature for highly efficient planar perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12883-12891.
[52] [52] DING B, ZHAO X, WANG S, et al. Mechanism of improving the performance of perovskite solar cells through alkali metal bis(trifluoromethanesulfonyl)imide modifying mesoporous titania electron transport layer[J]. Journal of Power Sources, 2021, 484: 229275.
[53] [53] TAN H, JAIN A, VOZNYY O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation[J]. Science, 2017, 355(6326): 722-726.
[54] [54] GONG J, YANG M, REBOLLAR D, et al. Divalent anionic doping in perovskite solar cells for enhanced chemical stability[J]. Advanced Materials, 2018, 30(34): 1800973.
[55] [55] YANG G, CHEN C, YAO F, et al. Effective carrier-concentration tuning of SnO2 quantum dot electron-selective layers for high-performance planar perovskite solar cells[J]. Advanced Materials, 2018, 30(14): 1706023.
[56] [56] WANG Z, KAMARUDIN M A, HUEY N C, et al. Interfacial sulfur functionalization anchoring SnO2 and CH3NH3PbI3 for enhanced stability and trap passivation in perovskite solar cells[J]. ChemSusChem, 2018, 11(22): 3941-3948.
[57] [57] AI Y, LIU W, SHOU C, et al. SnO2 surface defects tuned by (NH4)2S for high-efficiency perovskite solar cells[J]. Solar Energy, 2019, 194: 541-547.
[58] [58] WANG Z, WU T, XIAO L, et al. Multifunctional potassium hexafluorophosphate passivate interface defects for high efficiency perovskite solar cells[J]. Journal of Power Sources, 2021, 488: 229451.
[59] [59] BI H, LIU B, HE D, et al. Interfacial defect passivation and stress release by multifunctional KPF6 modification for planar perovskite solar cells with enhanced efficiency and stability[J]. Chemical Engineering Journal, 2021, 418: 129375.
[60] [60] WANG H, LI F, WANG P, et al. Chlorinated fullerene dimers for interfacial engineering toward stable planar perovskite solar cells with 22.3% efficiency[J]. Advanced Energy Materials, 2020, 10(21): 2000615.
[61] [61] LIU K, CHEN S, WU J, et al. Fullerene derivative anchored SnO2 for high-performance perovskite solar cells[J]. Energy & Environmental Science, 2018, 11(12): 3463-3471.
[62] [62] TIAN C, LIN K, LU J, et al. Interfacial bridge using a cis-fulleropyrrolidine for efficient planar perovskite solar cells with enhanced stability[J]. Small Methods, 2020, 4(5): 1900476.
[63] [63] HUANG S K, WANG Y C, KE W C, et al. Unravelling the origin of the photocarrier dynamics of fullerene-derivative passivation of SnO2 electron transporters in perovskite solar cells[J]. Journal of Materials Chemistry A, 2020, 8(44): 23607-23616.
[64] [64] SUN Y, ZHANG J, YU H, et al. Mechanism of bifunctional p-amino benzenesulfonic acid modified interface in perovskite solar cells[J]. Chemical Engineering Journal, 2021, 420: 129579.
[65] [65] TSAREV S, OLTHOF S, BOLDYREVA A G, et al. Reactive modification of zinc oxide with methylammonium iodide boosts the operational stability of perovskite solar cells[J]. Nano Energy, 2021, 83: 105774.
[66] [66] ZUO L, GU Z, YE T, et al. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer[J]. Journal of the American Chemical Society, 2015, 137(7): 2674-2679.
[67] [67] HAWASH Z, RAGA S R, SON D Y, et al. Interfacial modification of perovskite solar cells using an ultrathin MAI layer leads to enhanced energy level alignment, efficiencies, and reproducibility[J]. The Journal of Physical Chemistry Letters, 2017, 8(17): 3947-3953.
[68] [68] CHO K T, PAEK S, GRANCINI G, et al. Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface[J]. Energy & Environmental Science, 2017, 10(2): 621-627.
[69] [69] ZHOU Q, LIANG L, HU J, et al. High-performance perovskite solar cells with enhanced environmental stability based on a (p-FC6H4C2H4NH3)2[PbI4] capping layer[J]. Advanced Energy Materials, 2019, 9(12): 1802595.
[70] [70] MA C, PARK N G. Paradoxical approach with a hydrophilic passivation layer for moisture-stable, 23% efficient perovskite solar cells[J]. ACS Energy Letters, 2020, 5(10): 3268-3275.
[71] [71] LIU Y, AKIN S, PAN L, et al. Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22[J]. Science Advances, 2019, 5(6): eaaw2543.
[72] [72] ZHU H, LIU Y, EICKEMEYER F T, et al. Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency[J]. Advanced Materials, 2020, 32(12): 1907757.
[73] [73] JIANG Q, ZHAO Y, ZHANG X, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nature Photonics, 2019, 13(7): 460-466.
[74] [74] ALHARBI E A, ALYAMANI A Y, KUBICKI D J, et al. Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells[J]. Nature Communications, 2019, 10: 3008.
[75] [75] LUO D, YANG W, WANG Z, et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells[J]. Science, 2018, 360(6396): 1442-1446.
[76] [76] QIAN F, YUAN S, CAI Y, et al. Novel surface passivation for stable FA0.85 MA0.15 PbI3 perovskite solar cells with 21.6% efficiency[J]. Solar RRL, 2019, 3(7): 1900072.
[77] [77] LUO J, XIA J, YANG H, et al. Novel approach toward hole-transporting layer doped by hydrophobic Lewis acid through infiltrated diffusion doping for perovskite solar cells[J]. Nano Energy, 2020, 70: 104509.
[78] [78] WU Y, YANG X, CHEN W, et al. Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering[J]. Nature Energy, 2016, 1: 16148.
[79] [79] FU Q, XIAO S, TANG X, et al. Amphiphilic fullerenes employed to improve the quality of perovskite films and the stability of perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24782-24788.
[80] [80] ZHANG H, WU Y, SHEN C, et al. Efficient and stable chemical passivation on perovskite surface via bidentate anchoring[J]. Advanced Energy Materials, 2019, 9(13): 1803573.
[81] [81] LIU L, HUANG S, LU Y, et al. Grain-boundary “patches” by in situ conversion to enhance perovskite solar cells stability[J]. Advanced Materials, 2018, 30(29): 1800544.
[82] [82] WANG R, XUE J, WANG K L, et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics[J]. Science, 2019, 366(6472): 1509-1513.
[83] [83] KOUSHIK D, VERHEES W J H, KUANG Y, et al. High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture[J]. Energy & Environmental Science, 2017, 10(1): 91-100.
[84] [84] WANG H, ZHAO Y, WANG Z, et al. Hermetic seal for perovskite solar cells: an improved plasma enhanced atomic layer deposition encapsulation[J]. Nano Energy, 2020, 69: 104375.
[85] [85] BI D, YI C, LUO J, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%[J]. Nature Energy, 2016, 1: 16142.
[86] [86] CHAUDHARY B, KULKARNI A, JENA A K, et al. Poly(4-vinylpyridine)-based interfacial passivation to enhance voltage and moisture stability of lead halide perovskite solar cells[J]. ChemSusChem, 2017, 10(11): 2473-2479.
[87] [87] GUO P, YE Q, LIU C, et al. Double barriers for moisture degradation: assembly of hydrolysable hydrophobic molecules for stable perovskite solar cells with high open-circuit voltage[J]. Advanced Functional Materials, 2020, 30(28): 2002639.
[88] [88] MENG L, SUN C, WANG R, et al. Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21[J]. Journal of the American Chemical Society, 2018, 140(49): 17255-17262.
[89] [89] XU W, ZHU T, WU H, et al. Poly(ethylene glycol) diacrylate as the passivation layer for high-performance perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(40): 45045-45055.
[90] [90] WANG Y, WU T, Barbaud J, et al. Stabilizing heterostructures of soft perovskite semiconductors[J]. Science, 2019, 365(6454): 687-691.
[91] [91] WU S, ZHANG J, LI Z, et al. Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells[J]. Joule, 2020, 4(6): 1248-1262.
[92] [92] LIU X, CHENG Y, TANG B, et al. Shallow defects levels and extract detrapped charges to stabilize highly efficient and hysteresis-free perovskite photovoltaic devices[J]. Nano Energy, 2020, 71: 104556.
[93] [93] CHEN W, ZHOU Y, CHEN G, et al. Alkali chlorides for the suppression of the interfacial recombination in inverted planar perovskite solar cells[J]. Advanced Energy Materials, 2019, 9(19): 1803872.
[94] [94] CHENG Y, LI M, LIU X, et al. Impact of surface dipole in NiOx on the crystallization and photovoltaic performance of organometal halide perovskite solar cells[J]. Nano Energy, 2019, 61: 496-504.
[95] [95] SHI H, LIU C, JIANG Q, et al. Effective approaches to improve the electrical conductivity of PEDOT∶PSS: a review[J]. Advanced Electronic Materials, 2015, 1(4): 1500017.
Get Citation
Copy Citation Text
LI Hong, LIAO Xin, HOU Jing, XU Zhong. Interface Defects of Perovskite Solar Cells and Their Suppression Methods[J]. Journal of Synthetic Crystals, 2024, 53(1): 38
Category:
Received: May. 21, 2023
Accepted: --
Published Online: May. 31, 2024
The Author Email: Xin LIAO (280449731@qq.com)
CSTR:32186.14.