Chinese Optics Letters, Volume. 19, Issue 5, 051301(2021)
Thermally tunable microfiber knot resonator with flexible graphene heater
Fig. 1. (a) Schematic diagram of the proposed graphene-MKR modulator. (b)–(d) Detailed fabrication processes. (e) Optical microscopic image of fabricated graphene-MKR modulator. (f) Raman spectrum of CVD-grown graphene. (g) AFM image. (h) Optical microscope images of MKR illuminated by a red laser and microfiber (inset).
Fig. 2. (a) Experimental setup of phase modulation system based on the graphene-MKR modulator. ASE, amplified spontaneous emission; SMF, single mode fiber; OSA, optical spectrum analyzer. (b) Typical transmission spectrum. (c) Transmission spectra under different voltages. (d) The dependence of spectral shift on voltage and electric power. (e) Thermograms of the graphene-MKR modulator at 0 V (left) and 10 V (right).
Fig. 3. (a) Experimental setup of the optical switch system based on the graphene-MKR modulator. DFB, distributed feedback laser; SMF, single mode fiber. (b)–(d) Waveforms of input voltage (up, blue) and output light (down, black) measured at duty cycle of 50:50, 30:70, and 10:90, respectively. Red lines represent the fitting curves of rising and falling edges of output light waveforms.
Get Citation
Copy Citation Text
Yunzheng Wang, Qing Wu, Huide Wang, Jiefeng Liu, Zheng Zheng, Meng Zhang, Han Zhang, "Thermally tunable microfiber knot resonator with flexible graphene heater," Chin. Opt. Lett. 19, 051301 (2021)
Category: Integrated Optics
Received: Aug. 13, 2020
Accepted: Nov. 20, 2020
Posted: Nov. 23, 2020
Published Online: Mar. 3, 2021
The Author Email: Meng Zhang (mengzhang10@buaa.edu.cn)