Chinese Journal of Liquid Crystals and Displays, Volume. 35, Issue 12, 1211(2020)
Laser annealing of metal oxide thin film transistor
[4] [4] KWON J Y, JEONG J K. Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors [J]. Semiconductor Science and Technology, 2015, 30(2): 024002.
[5] [5] KHAN A F, MEHMOOD M, ASLAM M, et al. Characteristics of electron beam evaporated nanocrystalline SnO2 thin films annealed in air [J]. Applied Surface Science, 2010, 256(7): 2252-2258.
[6] [6] SUNDARAM S K, MAZUR E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses [J]. Nature Materials, 2002, 1(4): 217-224.
[7] [7] PALNEEDI H, PARK J H, MAURYA D, et al. Laser irradiation of metal oxide films and nanostructures: applications and advances [J]. Advanced Materials, 2018, 30(14): 1705148.
[8] [8] BUERLE D. Laser Processing and Chemistry [M]. Berlin: Springer, 2011.
[9] [9] DAHOTRE N B, HARIMKAR S P. Laser Fabrication and Machining of Materials [M]. New York: Springer, 2008.
[10] [10] KIM H, GILMORE C M, PIQU A, et al. Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices [J]. Journal of Applied Physics, 1999, 86(11): 6451-6461.
[11] [11] PALNEEDI H, MAURYA D, KIM G Y, et al. Unleashing the full potential of magnetoelectric coupling in film heterostructures [J]. Advanced Materials, 2017, 29(10): 1605688.
[12] [12] ALLEMANN I B, GOLDBERG D J. Basics in Dermatological Laser Applications [M]. Basel: Karger, 2011.
[13] [13] PALNEEDI H, MAURYA D, KIM G Y, et al. Enhanced off-resonance magnetoelectric response in laser annealed PZT thick film grown on magnetostrictive amorphous metal substrate [J]. Applied Physics Letters, 2015, 107(1): 012904.
[14] [14] SANDU C S, TEODORESCU V S, GHICA C, et al. Densification and crystallization of SnO2∶Sb sol-gel films using excimer laser annealing [J]. Applied Surface Science, 2003, 208-209: 382-387.
[15] [15] CHOI I, JEONG H Y, JUNG D Y, et al. Laser-induced solid-phase doped graphene [J]. ACS Nano, 2014, 8(8): 7671-7677.
[16] [16] JOE D J, KIM S, PARK J H, et al. Laser-material interactions for flexible applications [J]. Advanced Materials, 2017, 29(26): 1606586.
[18] [18] YOUNG R T, NARAYAN J, CHRISTIE W H, et al. Semiconductor processing with excimer lasers [J]. AIP Conference Proceedings, 1983, 100(1): 266-278.
[19] [19] TSAY C Y, HUANG T T. Improvement of physical properties of IGZO thin films prepared by excimer laser annealing of sol-gel derived precursor films [J]. Materials Chemistry and Physics, 2013, 140(1): 365-372.
[20] [20] TSAY C Y, HUANG T T. Characterization of low-temperature solution-processed indium-zinc oxide semiconductor thin films by KrF excimer laser annealing [J]. Ceramics International, 2014, 40(6): 8287-8292.
[21] [21] BAYATI M R, JOSHI S, MOLAEI R, et al. Ultrafast switching in wetting properties of TiO2/YSZ/Si(001) epitaxial heterostructures induced by laser irradiation [J]. Journal of Applied Physics, 2013, 113(6): 063706.
[22] [22] CHEN M F, LIN K M, HO Y S. Laser annealing process of ITO thin films using beam shaping technology [J]. Optics and Lasers in Engineering, 2012, 50(3): 491-495.
[23] [23] MOLAEI R, BAYATI M R, ALIPOUR H M, et al. Nanosecond laser switching of surface wettability and epitaxial integration of c-axis ZnO thin films with Si(111) substrates [J]. Journal of Physics: Condensed Matter, 2013, 26(1): 015004.
[24] [24] YANG Y H, YANG S S, CHOU K S. Performance improvements of IGZO and ZnO thin-film transistors by laser-irradiation treatment [J]. Journal of the Society for Information Display, 2011, 19(3): 247-252.
[25] [25] TSANG W M, WONG F L, FUNG M K, et al. Transparent conducting aluminum-doped zinc oxide thin film prepared by sol-gel process followed by laser irradiation treatment [J]. Thin Solid Films, 2008, 517(2): 891-895.
[29] [29] VON DER LINDE D, SOKOLOWSKI-TINTEN K, BIALKOWSKI J. Laser-solid interaction in the femtosecond time regime [J]. Applied Surface Science, 1997, 109-110: 1-10.
[30] [30] GOLDMAN J R, PRYBYLA J A. Ultrafast dynamics of laser-excited electron distributions in silicon [J]. Physical Review Letters, 1994, 72(9): 1364-1367.
[32] [32] SUTTMANN O, MOALEM A, KLING R, et al. Drilling, cutting, welding, marking and microforming [M]//SUGIOKA K, MEUNIER M, PIQU A. Laser Precision Microfabrication. Berlin Heidelberg: Springer, 2010: 311-335.
[33] [33] MAJUMDAR J D, MANNA I. Introduction to laser assisted fabrication of materials [M]//MAJUMDAR J D, MANNA I. Laser-Assisted Fabrication of Materials. Berlin Heidelberg: Springer, 2013: 1-67.
[34] [34] BUERLE D. Material transformations, laser cleaning [M]//BUERLE D. Laser Processing and Chemistry. Berlin Heidelberg: Springer, 2011: 535-559.
[35] [35] PADMANABHAM G, SHANMUGARAJAN B. Laser-based joining of metallic and non-metallic materials [M]//MAJUMDAR J D, MANNA I. Laser-Assisted Fabrication of Materials. Berlin Heidelberg: Springer, 2013: 159-220.
[36] [36] VOUTSAS A T, MARMORSTEIN A M, SOLANKI R. The impact of annealing ambient on the performance of excimer-laser-annealed polysilicon thin-film transistors [J]. Journal of the Electrochemical Society, 1999, 146(9): 3500.
[37] [37] SUGA K, CHIDA M, MISHIMA Y, et al. The effect of a laser annealing ambient on the morphology and TFT performance of poly-Si films [J]. SID Symposium Digest of Technical Papers, 2000, 31(1): 534-537.
[38] [38] CRACIUN V, BOYD I W, CRACIUN D, et al. Vacuum ultraviolet annealing of hydroxyapatite films grown by pulsed laser deposition [J]. Journal of Applied Physics, 1999, 85(12): 8410-8414.
[39] [39] MARINE W, PATRONE L, LUK'YANCHUK B, et al. Strategy of nanocluster and nanostructure synthesis by conventional pulsed laser ablation [J]. Applied Surface Science, 2000, 154-155: 345-352.
[40] [40] MARMORSTEIN A, VOUTSAS A T, SOLANKI R. A systematic study and optimization of parameters affecting grain size and surface roughness in excimer laser annealed polysilicon thin films [J]. Journal of Applied Physics, 1997, 82(9): 4303-4309.
[41] [41] PEREIRA A, CROS A, DELAPORTE P, et al. Surface nanostructuring of metals by laser irradiation: effects of pulse duration, wavelength and gas atmosphere [J]. Applied Physics A, 2004, 79(4/6): 1433-1437.
[42] [42] KAMIYA T, NOMURA K, HOSONO H. Present status of amorphous In-Ga-Zn-O thin-film transistors [J]. Science and Technology of Advanced Materials, 2010, 11(4): 044305.
[43] [43] JEONG J H, YANG H W, PARK J S, et al. Origin of subthreshold swing improvement in amorphous indium gallium zinc oxide transistors [J]. Electrochemical and Solid State Letters, 2008, 11(6): H157-H159.
[44] [44] KIMURA M, KAMIYA T, NAKANISHI T, et al. Intrinsic carrier mobility in amorphous In-Ga-Zn-O thin-film transistors determined by combined field-effect technique [J]. Applied Physics Letters, 2010, 96(26): 262105.
[45] [45] HUANG H Y, WANG S J, WU C H, et al. Improvement of electrical performance of InGaZnO/HfSiO TFTs with 248-nm excimer laser annealing [J]. Electronic Materials Letters, 2014, 10(5): 899-902.
[46] [46] CHEN C H, CHEN G X, YANG H H, et al. Solution-processed metal oxide arrays using femtosecond laser ablation and annealing for thin-film transistors [J]. Journal of Materials Chemistry C, 2017, 5(36): 9273-9280.
[47] [47] CHEN C H, YANG H H, YANG Q, et al. Low-temperature solution-processed flexible metal oxide thin-film transistors via laser annealing [J]. Journal of Physics D: Applied Physics, 2019, 52(38): 385105.
[48] [48] BERMUNDO J P S, ISHIKAWA Y, FUJII M N, et al. H and Au diffusion in high mobility a-InGaZnO thin-film transistors via low temperature KrF excimer laser annealing [J]. Applied Physics Letters, 2017, 110(13): 133503.
[49] [49] SHARMA S D, SINGH D, SAINI K K, et al. Sol-gel-derived super-hydrophilic nickel doped TiO2 film as active photo-catalyst [J]. Applied Catalysis A: General, 2006, 314(1): 40-46.
[50] [50] BAYATI M R, JOSHI S, MOLAEI R, et al. Ultrafast switching in wetting properties of TiO2/YSZ/Si(001) epitaxial heterostructures induced by laser irradiation [J]. Journal of Applied Physics, 2013, 113(6): 063706.
[52] [52] MEZHENNY S, MAKSYMOVYCH P, THOMPSON T L, et al. STM studies of defect production on the TiO2 (110)-(1×1) and TiO2 (110)-(1×2) surfaces induced by UV irradiation [J]. Chemical Physics Letters, 2003, 369(1/2): 152-158.
[53] [53] FERNANDES R M, AP E F. Subject index [J]. Applied Surface Science, 2000, 168(1/4): 359-372.
[54] [54] CRACIUN V, CRACIUN D, CHEN Z, et al. Room temperature growth of indium tin oxide thin films by ultraviolet-assisted pulsed laser deposition [J]. Applied Surface Science, 2000, 168(1/4): 118-122.
[55] [55] DENG Y X, LIU X Z, YUAN W J, et al. Effect of deep UV laser treatment on silicon-doped Tin oxide thin film [J]. Journal of the Society for Information Display, 2020, 28(2): 194-203.
[56] [56] KIM M G, KIM H S, HA Y G, et al. High-performance solution-processed amorphous zinc indium tin oxide thin-film transistors [J]. Journal of the American Chemical Society, 2010, 132(30): 10352-10364.
[57] [57] JEONG S, HA Y G, MOON J, et al. Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors [J]. Advanced Materials, 2010, 22(12): 1346-1350.
[58] [58] DELLIS S, ISAKOV I, KALFAGIANNIS N, et al. Rapid laser-induced photochemical conversion of sol-gel precursors to In2O3 layers and their application in thin-film transistors [J]. Journal of Materials Chemistry C, 2017, 5(15): 3673-3677.
[59] [59] LIN Y H, LIU Y S, LIN Y C, et al. Decoupling free-carries contributions from oxygen-vacancy and cation-substitution in extrinsic conducting oxides[J]. Journal of Applied Physics, 2013,113(3): 1471-1477.
[60] [60] SOCRATOUS J, BANGER K K, VAYNZOF Y, et al. Electronic structure of low-temperature solution-processed amorphous metal oxide semiconductors for thin-film transistor applications [J]. Advanced Functional Materials, 2015, 25(12): 1873-1885.
[61] [61] HUANG H, HU H L, ZHU J G, et al. Inkjet-printed In-Ga-Zn oxide thin-film transistors with laser spike annealing [J]. Journal of Electronic Materials, 2017, 46(7): 4497-4502.
[62] [62] HWANG S, LEE J H, WOO C H, et al. Effect of annealing temperature on the electrical performances of solution-processed InGaZnO thin film transistors [J]. Thin Solid Films, 2011, 519(15): 5146-5149.
[63] [63] HUANG X M, WU C F, LU H, et al. Large-swing a-IGZO inverter with a depletion load induced by laser annealing [J]. IEEE Electron Device Letters, 2014, 35(10): 1034-1036.
[64] [64] FUJII M N, ISHIKAWA Y, ISHIHARA R, et al. Nano-crystallization in ZnO-doped In2O3 thin films via excimer laser annealing for thin-film transistors [J]. AIP Advances, 2016, 6(6): 065216.
[65] [65] FUJII M, ISHIKAWA Y, ISHIHARA R, et al. Low temperature high-mobility InZnO thin-film transistors fabricated by excimer laser annealing [J]. Applied Physics Letters, 2013, 102(12): 122107.
[66] [66] EL HAMALI S O, CRANTON W M, KALFAGIANNIS N, et al. Enhanced electrical and optical properties of room temperature deposited aluminium doped zinc oxide (AZO) thin films by excimer laser annealing [J]. Optics and Lasers in Engineering, 2016, 80: 45-51.
[67] [67] NIAN Q, ZHANG M Y, SCHWARTZ B D, et al. Ultraviolet laser crystallized ZnO∶Al films on sapphire with high Hall mobility for simultaneous enhancement of conductivity and transparency [J]. Applied Physics Letters, 2014, 104(20): 201907.
[68] [68] HAGENDORFER H, LIENAU K, NISHIWAKI S, et al. Highly transparent and conductive ZnO∶Al thin films from a low temperature aqueous solution approach [J]. Advanced Materials, 2014, 26(4): 632-636.
[69] [69] TAKECHI K, NAKATA M, EGUCHI T, et al. Comparison of ultraviolet photo-field effects between hydrogenated amorphous silicon and amorphous InGaZnO4 thin-film transistors [J]. Japanese Journal of Applied Physics, 2009, 48(1R): 010203.
[70] [70] OH H, YOON S M, RYU M K, et al. Transition of dominant instability mechanism depending on negative gate bias under illumination in amorphous In-Ga-Zn-O thin film transistor [J]. Applied Physics Letters, 2011, 98(3): 033504.
[71] [71] MIGLIORATO P, DELWAR HOSSAIN CHOWDHURY M, GWANG UM J, et al. Light/negative bias stress instabilities in indium gallium zinc oxide thin film transistors explained by creation of a double donor [J]. Applied Physics Letters, 2012, 101(12): 123502.
[72] [72] JIN S, LEE S, LEE E, et al. P-154L: late-news poster: stability enhancement of oxide TFTs by blue laser annealing [J]. SID Symposium Digest of Technical Papers, 2015, 46(1): 1228-1230.
[73] [73] OLORUNYOLEMI T, BIRNBOIM A, CARMEL Y, et al. Thermal conductivity of zinc oxide: from green to sintered state [J]. Journal of the American Ceramic Society, 2002, 85(5): 1249-1253.
[74] [74] LUCKYANOVA M N, CHEN D, MA W, et al. Thermal conductivity control by oxygen defect concentration modification in reducible oxides: the case of Pr0.1Ce0.9O2δ thin films [J]. Applied Physics Letters, 2014, 104(6): 061911.
[75] [75] CHUNG C Y, ZHU B, AST D G, et al. High mobility amorphous InGaZnO4 thin film transistors formed by CO2 laser spike annealing [J]. Applied Physics Letters, 2015, 106(12): 123506.
[76] [76] YANG Y H, YANG S S, CHOU K S. Laser-irradiated zinc oxide thin-film transistors fabricated by solution processing [J]. Journal of the Society for Information Display, 2010, 18(10): 745-748.
[77] [77] NAKATA M, TAKECHI K, YAMAGUCHI S, et al. Effects of excimer laser annealing on InGaZnO4 thin-film transistors having different active-layer thicknesses compared with those on polycrystalline silicon [J]. Japanese Journal of Applied Physics, 2009, 48(11R): 115505.
[78] [78] TSUCHIYA T, YAMAGUCHI F, MORIMOTO I, et al. Microstructure control of low-resistivity tin-doped indium oxide films grown by photoreaction of nanoparticles using a KrF excimer laser at room temperature [J]. Applied Physics A, 2010, 99(4): 745-749.
[79] [79] NAKATA M, TAKECHI K, AZUMA K, et al. Improvement of InGaZnO4 thin film transistors characteristics utilizing excimer laser annealing [J]. Applied Physics Express, 2009, 2(2): 021102.
[80] [80] PARSHINA L S, NOVODVORSKY O A, KHRAMOVA O D, et al. Laser annealing of thin ITO films on flexible organic substrates [J]. Semiconductors, 2019, 53(2): 160-164.
[81] [81] NAKATA M, TAKECHI K, EGUCHI T, et al. Flexible high-performance amorphous InGaZnO4 thin-film transistors utilizing excimer laser annealing [J]. Japanese Journal of Applied Physics, 2009, 48(8R): 081607.
[82] [82] HAMANO F, MIZUTANI A, IMOKAWA K, et al. Surface flattening of poly-Si thin films by laser annealing and electrical properties of LTPS-TFTs [C]//Proceedings of SPIE 11268, Laser-based Micro- and Nanoprocessing XIV. San Francisco: SPIE, 2020: 11268.
Get Citation
Copy Citation Text
NING Hong-long, DENG Yu-xi, HUANG Jian-lang, LUO Zi-long, HU Run-dong, LIU Xian-zhe, WANG Yi-ping, QIU Tian, YAO Ri-hui, PENG Jun-biao. Laser annealing of metal oxide thin film transistor[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(12): 1211
Category:
Received: Jun. 17, 2020
Accepted: --
Published Online: Dec. 28, 2020
The Author Email: NING Hong-long (ninghl@scut.edu.cn)