Chinese Journal of Liquid Crystals and Displays, Volume. 39, Issue 2, 121(2024)

DFNet:efficient decoder-free semantic segmentation networks

Lamei LIU1, Baochang DU1,2, Huiling HUANG2, Yongjian ZHANG2,3, and Jun HAN2、*
Author Affiliations
  • 1College of Software,Liaoning Technical University,Huludao 125000,China
  • 2Quanzhou Institute of Equipment Manufacturing,Haixi Institutes,Chinese Academy of Sciences,Quanzhou 362000,China
  • 3College of Electrical Engineering and Automation,Xiamen University of Technology,Xiamen 361024,China
  • show less
    References(24)

    [7] VASWANI A, SHAZEER N, PARMAR N et al. Attention is all you need[C](2017).

    [9] XIE E Z, WANG W H, YU Z D et al. SegFormer: Simple and efficient design for semantic segmentation with transformers[C], 34, 12077-12090(2021).

    [20] LENG Z Q, TAN M X, LIU C X et al. PolyLoss: A polynomial expansion perspective of classification loss functions[C](2022).

    [22] MNIH V[M]. Machine Learning for Aerial Image Labeling(2013).

    [24] GUO M H, LIU Z N, MU T J et al. Beyond self-attention: External attention using two linear layers for visual tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 5436-5447(2023).

    Tools

    Get Citation

    Copy Citation Text

    Lamei LIU, Baochang DU, Huiling HUANG, Yongjian ZHANG, Jun HAN. DFNet:efficient decoder-free semantic segmentation networks[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(2): 121

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Feb. 6, 2023

    Accepted: --

    Published Online: Apr. 24, 2024

    The Author Email: Jun HAN (junhan@fjirsm.ac.cn)

    DOI:10.37188/CJLCD.2023-0036

    Topics