Photonics Research, Volume. 9, Issue 12, 2435(2021)
Unconventional Weyl exceptional contours in non-Hermitian photonic continua
[1] X. Wan, A. M. Turner, A. Vishwanath, S. Y. Savrasov. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B, 83, 205101(2011).
[2] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, H. Ding. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X, 5, 031013(2015).
[3] N. P. Armitage, E. J. Mele, A. Vishwanath. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys., 90, 015001(2018).
[4] L. Lu, L. Fu, J. D. Joannopoulos, M. Soljačić. Weyl points and line nodes in gyroid photonic crystals. Nat. Photonics, 7, 294-299(2013).
[5] L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, M. Soljacic. Experimental observation of Weyl points. Science, 349, 622-624(2015).
[6] M. Xiao, W.-J. Chen, W.-Y. He, C. T. Chan. Synthetic gauge flux and Weyl points in acoustic systems. Nat. Phys., 11, 920-924(2015).
[7] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, M. Z. Hasan. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science, 349, 613-617(2015).
[8] W.-J. Chen, M. Xiao, C. T. Chan. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states. Nat. Commun., 7, 13038(2016).
[9] B. Yang, Q. Guo, B. Tremain, L. E. Barr, W. Gao, H. Liu, B. Béri, Y. Xiang, D. Fan, A. P. Hibbins, S. Zhang. Direct observation of topological surface-state arcs in photonic metamaterials. Nat. Commun., 8, 97(2017).
[10] J. Noh, S. Huang, D. Leykam, Y. D. Chong, K. P. Chen, M. C. Rechtsman. Experimental observation of optical Weyl points and Fermi arc-like surface states. Nat. Phys., 13, 611-617(2017).
[11] M. Zhou, L. Ying, L. Lu, L. Shi, J. Zi, Z. Yu. Electromagnetic scattering laws in Weyl systems. Nat. Commun., 8, 1(2017).
[12] B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, S. Zhang. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures. Science, 359, 1013-1016(2018).
[13] D. Wang, B. Yang, W. Gao, H. Jia, Q. Yang, X. Chen, M. Wei, C. Liu, M. Navarro, J. Han, W. Zhang, S. Zhang. Photonic Weyl points due to broken time-reversal symmetry in magnetized semiconductor. Nat. Phys., 15, 1150-1155(2019).
[14] W. Gao, B. Yang, M. Lawrence, F. Fang, B. Béri, S. Zhang. Photonic Weyl degeneracies in magnetized plasma. Nat. Commun., 7, 12435(2016).
[15] S. Vaidya, J. Noh, A. Cerjan, C. Jörg, G. von Freymann, M. C. Rechtsman. Observation of a charge-2 photonic Weyl point in the infrared. Phys. Rev. Lett., 125, 253902(2020).
[16] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, T.-R. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, D. Sanchez, H. Zheng, H.-T. Jeng, A. Bansil, T. Neupert, H. Lin, M. Z. Hasan. New type of Weyl semimetal with quadratic double Weyl fermions. Proc. Natl. Acad. Sci. USA, 113, 1180-1185(2016).
[17] T. Zhang, Z. Song, A. Alexandradinata, H. Weng, C. Fang, L. Lu, Z. Fang. Double-Weyl phonons in transition-metal monosilicides. Phys. Rev. Lett., 120, 016401(2018).
[18] H. He, C. Qiu, X. Cai, M. Xiao, M. Ke, F. Zhang, Z. Liu. Observation of quadratic Weyl points and double-helicoid arcs. Nat. Commun., 11, 1820(2020).
[19] Y. Yang, Z. Gao, X. Feng, Y.-X. Huang, P. Zhou, S. A. Yang, Y. Chong, B. Zhang. Ideal unconventional Weyl point in a chiral photonic metamaterial. Phys. Rev. Lett., 125, 143001(2020).
[20] D. S. Sanchez, I. Belopolski, T. A. Cochran, X. Xu, J.-X. Yin, G. Chang, W. Xie, K. Manna, V. Süß, C.-Y. Huang, N. Alidoust, D. Multer, S. S. Zhang, N. Shumiya, X. Wang, G.-Q. Wang, T.-R. Chang, C. Felser, S.-Y. Xu, S. Jia, H. Lin, M. Z. Hasan. Topological chiral crystals with helicoid-arc quantum states. Nature, 567, 500-505(2019).
[21] Z. Rao, H. Li, T. Zhang, S. Tian, C. Li, B. Fu, C. Tang, L. Wang, Z. Li, W. Fan, J. Li, Y. Huang, Z. Liu, Y. Long, C. Fang, H. Weng, Y. Shi, H. Lei, Y. Sun, T. Qian, H. Ding. Observation of unconventional chiral fermions with long Fermi arcs in CoSi. Nature, 567, 496-499(2019).
[22] Y. Yang, H. Sun, J. Xia, H. Xue, Z. Gao, Y. Ge, D. Jia, S. Yuan, Y. Chong, B. Zhang. Topological triply degenerate point with double Fermi arcs. Nat. Phys., 15, 645-649(2019).
[23] C. Fang, M. J. Gilbert, X. Dai, B. A. Bernevig. Multi-Weyl topological semimetals stabilized by point group symmetry. Phys. Rev. Lett., 108, 266802(2012).
[24] T. Zhang, R. Takahashi, C. Fang, S. Murakami. Twofold quadruple Weyl nodes in chiral cubic crystals. Phys. Rev. B, 102, 125148(2020).
[25] C. Cui, X.-P. Li, D.-S. Ma, Z.-M. Yu, Y. Yao. Charge-4 Weyl point: minimum lattice model and chirality-dependent properties. Phys. Rev. B, 104, 075115(2021).
[26] H. Jia, R. Zhang, W. Gao, Q. Guo, B. Yang, J. Hu, Y. Bi, Y. Xiang, C. Liu, S. Zhang. Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials. Science, 363, 148-151(2019).
[27] H. Shen, B. Zhen, L. Fu. Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett., 120, 146402(2018).
[28] Y. Xu, S.-T. Wang, L.-M. Duan. Weyl exceptional rings in a three-dimensional dissipative cold atomic gas. Phys. Rev. Lett., 118, 045701(2017).
[29] A. Cerjan, M. Xiao, L. Yuan, S. Fan. Effects of non-Hermitian perturbations on Weyl Hamiltonians with arbitrary topological charges. Phys. Rev. B, 97, 075128(2018).
[30] H. Zhou, J. Y. Lee, S. Liu, B. Zhen. Exceptional surfaces in PT-symmetric non-Hermitian photonic systems. Optica, 6, 190-193(2019).
[31] A. Cerjan, S. Huang, M. Wang, K. P. Chen, Y. Chong, M. C. Rechtsman. Experimental realization of a Weyl exceptional ring. Nat. Photonics, 13, 623-628(2019).
[32] W. Wang, W. Gao, L. Cao, Y. Xiang, S. Zhang. Photonic topological Fermi nodal disk in non-Hermitian magnetic plasma. Light Sci. Appl., 9, 1(2020).
[33] K. Shastri, F. Monticone. Dissipation-induced topological transitions in continuous Weyl materials. Phys. Rev. Res., 2, 033065(2020).
[34] D. Chowdhury, A. Banerjee, A. Narayan. Light-driven Lifshitz transitions in non-Hermitian multi-Weyl semimetals. Phys. Rev. A, 103, L051101(2021).
[35] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade. Molding the Flow of Light, 44(2008).
[36] Y. Cheng, W. Li, X. Mao. Triple-band polarization angle independent 90° polarization rotator based on Fermat’s spiral structure planar chiral metamaterial. Prog. Electromagn. Res., 165, 35-45(2019).
[37] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade. Molding the Flow of Light, 37(2008).
[38] A. Raman, S. Fan. Photonic band structure of dispersive metamaterials formulated as a Hermitian eigenvalue problem. Phys. Rev. Lett., 104, 087401(2010).
[39] F. Binkowski, L. Zschiedrich, S. Burger. An auxiliary field approach for computing optical resonances in dispersive media. J. Eur. Opt. Soc. Publ., 15, 1(2019).
[40] M. G. Silveirinha. Chern invariants for continuous media. Phys. Rev. B, 92, 125153(2015).
[41] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade. Molding the Flow of Light, 18(2008).
[42] Z.-M. Yu, Z. Zhang, G.-B. Liu, W. Wu, X.-P. Li, R.-W. Zhang, S. A. Yang, Y. Yao. Encyclopedia of emergent particles in three-dimensional crystals(2021).
[43] S. Buddhiraju, A. Song, G. T. Papadakis, S. Fan. Nonreciprocal metamaterial obeying time-reversal symmetry. Phys. Rev. Lett., 124, 257403(2020).
[44] A. Cerjan, S. Fan. Achieving arbitrary control over pairs of polarization states using complex birefringent metamaterials. Phys. Rev. Lett., 118, 253902(2017).
[45] C. Wang, C. Qian, H. Hu, L. Shen, Z. J. Wang, H. Wang, Z. Xu, B. Zhang, H. Chen, X. Lin. Superscattering of light in refractive-index near-zero environments. Prog. Electromagn. Res., 168, 15-23(2020).
[46] P. Xie, G.-M. Wang, H.-P. Li, Y.-W. Wang, B. Zong. Wideband RCS reduction of high gain Fabry-Perot antenna employing a receiver-transmitter metasurface. Prog. Electromagn. Res., 169, 103-115(2020).
[47] C. L. Holloway, E. F. Kuester, A. H. Haddab. Retrieval approach for determining surface susceptibilities and surface porosities of a symmetric metascreen from reflection and transmission coefficients. Prog. Electromagn. Res., 166, 1-22(2019).
[48] B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, M. Soljačić. Spawning rings of exceptional points out of Dirac cones. Nature, 525, 354-358(2015).
[49] K. Zhang, Z. Yang, C. Fang. Universal non-Hermitian skin effect in two and higher dimensions(2021).
[50] A. Raman, S. Fan. Perturbation theory for plasmonic modulation and sensing. Phys. Rev. B, 83, 205131(2011).
Get Citation
Copy Citation Text
Qinghui Yan, Qiaolu Chen, Li Zhang, Rui Xi, Hongsheng Chen, Yihao Yang, "Unconventional Weyl exceptional contours in non-Hermitian photonic continua," Photonics Res. 9, 2435 (2021)
Category: Physical Optics
Received: Jul. 29, 2021
Accepted: Sep. 14, 2021
Published Online: Nov. 15, 2021
The Author Email: Hongsheng Chen (hansomchen@zju.edu.cn), Yihao Yang (yangyihao@zju.edu.cn)