Journal of the Chinese Ceramic Society, Volume. 53, Issue 6, 1510(2025)
Constructing Composite Solid Electrolytes for Commercial All-Solid-State Lithium Batteries
[1] [1] FAN L Z, HE H C, NAN C W. Tailoring inorganic–polymer composites for the mass production of solid-state batteries[J]. Nat Rev Mater, 2021, 6: 1003–1019.
[2] [2] WANG J, FENG X N, YU Y Z, et al. Rapid temperature-responsive thermal regulator for safety management of battery modules[J]. Nat Energy, 2024, 9: 939–946.
[3] [3] LIU H, LIANG Y H, WANG C, et al. Priority and prospect of sulfide-based solid-electrolyte membrane[J]. Adv Mater, 2023, 35(50): e2206013.
[4] [4] MIAO X, GUAN S D, MA C, et al. Role of interfaces in solid-state batteries[J]. Adv Mater, 2023, 35(50): e2206402.
[5] [5] LIU H, LI D B, DONG C X, et al. Generalized interphase design for stabilized Li/inorganic electrolyte interfaces[J]. Adv Energy Mater, 2024, 14(38): 2402064.
[6] [6] LIU H, ZHU Q S, WANG C, et al. High air stability and excellent Li metal compatibility of argyrodite-based electrolyte enabling superior all-solid-state Li metal batteries[J]. Adv Funct Mater, 2022, 32(32): 2203858.
[7] [7] TAN D H S, MENG Y S, JANG J. Scaling up high-energy-density sulfidic solid-state batteries: A lab-to-pilot perspective[J]. Joule, 2022, 6(8): 1755–1769.
[8] [8] YU D F, YUAN H C, WEN K H, et al. A CuS-based composite cathode with a high areal capacity for sulfide-based all-solid-state batteries[J]. Nano Energy, 2024, 127: 109767.
[9] [9] WANG C, ZHAO X X, LI D B, et al. Anion-modulated ion conductor with chain conformational transformation for stabilizing interfacial phase of high-voltage lithium metal batteries[J]. Angew Chem Int Ed, 2024, 63(19): e202317856.
[10] [10] LI S Y, ZHANG J H, ZHANG S C, et al. Cation replacement method enables high-performance electrolytes for multivalent metal batteries[J]. Nat Energy, 2024, 9: 285–297.
[11] [11] ZHANG S M, ZHAO F P, CHANG L Y, et al. Amorphous oxyhalide matters for achieving lithium superionic conduction[J]. J Am Chem Soc, 2024, 146(5): 2977–2985.
[12] [12] SONG Y B, BAECK K H, KWAK H, et al. Dimensional strategies for bridging the research gap between lab-scale and potentially practical all-solid-state batteries: The role of sulfide solid electrolyte films[J]. Adv Energy Mater, 2023, 13(32): 2301142.
[13] [13] THOMAS F, MAHDI L, LEMAIRE J, et al. Technological advances and market developments of solid-state batteries: A review[J]. Materials, 2024, 17(1): 239.
[14] [14] DING D C, TAO H C, FAN X M, et al. A hybrid LiCl/LixSn conductive interlayer to unlock the potential of solid-state lithium metal batteries[J]. Adv Funct Mater, 2024, 34(29): 2401457.
[15] [15] ZHAO N, KHOKHAR W, BI Z J, et al. Solid garnet batteries[J]. Joule, 2019, 3(5): 1190–1199.
[16] [16] HUNNESTAD K A, SCHULTHEI J, MATHISEN A C, et al. Quantitative mapping of chemical defects at charged grain boundaries in a ferroelectric oxide[J]. Adv Mater, 2023, 35(38): e2302543.
[17] [17] LUO M, WANG C H, DUAN Y, et al. Surface coating enabling sulfide solid electrolytes with excellent air stability and lithium compatibility[J]. Energy Environ Mater, 2024, 7(6): e12753.
[18] [18] JANG D I, KO H Y, PARK J, et al. Artificial byproduct coatings through a sublimated sulfur vapor reaction to enhance the stability of cathode/sulfide electrolyte interfaces[J]. ACS Energy Lett, 2024, 9(12): 5966–5976.
[19] [19] LIANG F, WANG S Z, LIANG Q, et al. Insight into all-solid-state Li–S batteries: Challenges, advances, and engineering design[J]. Adv Energy Mater, 2024, 14(38): 2401959.
[20] [20] ZUO T T, RUE R, PAN R J, et al. A mechanistic investigation of the Li10GeP2S12|LiNi1–x–yCoxMnyO2 interface stability in all-solid-state lithium batteries[J]. Nat Commun, 2021, 12(1): 6669.
[21] [21] HU X, ZHANG Z J, ZHANG X, et al. External-pressure– electrochemistry coupling in solid-state lithium metal batteries[J]. Nat Rev Mater, 2024, 9: 305–320.
[22] [22] LI H, LIN Q S, WANG J Z, et al. A cost-effective sulfide solid electrolyte Li7P3S7.5O3.5 with low density and excellent anode compatibility[J]. Angew Chem Int Ed, 2024, 63(37): e202407892.
[23] [23] WANG J Z, CHEN F, HU L, et al. Alternate crystal structure achieving ionic conductivity above 1 mS cm–1 in cost-effective Zr-based chloride solid electrolytes[J]. Nano Lett, 2023, 23(13): 6081–6087.
[24] [24] WANG K, REN Q Y, GU Z Q, et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries[J]. Nat Commun, 2021, 12(1): 4410.
[25] [25] LUO J, SUN Q, LIANG J W, et al. Rapidlyin situcross-linked poly(butylene oxide) electrolyte interface enabling halide-based all-solid-state lithium metal batteries[J]. ACS Energy Lett, 2023, 8(9): 3676–3684.
[26] [26] LUO X M, HE X N, SU H, et al. Effective regulation towards electrochemical stability of superionic solid electrolyteviafacile dual-halogen strategy[J]. Chem Eng J, 2023, 465: 143036.
[27] [27] TUO K Y, SUN C W, LIU S Q. Recent progress in and perspectives on emerging halide superionic conductors for all-solid-state batteries[J]. Electrochem Energy Rev, 2023, 6(1): 17.
[28] [28] LI B, WANG C H, YU R Z, et al. Recent progress on metal–organic framework/polymer composite electrolytes for solid-state lithium metal batteries: Ion transport regulation and interface engineering[J]. Energy Environ Sci, 2024, 17(5): 1854–1884.
[29] [29] SU X, XU X P, JI Z Q, et al. Polyethylene oxide-based composite solid electrolytes for lithium batteries: Current progress, low-temperature and high-voltage limitations, and prospects[J]. Electrochem Energy Rev, 2024, 7(1): 2.
[30] [30] YANG H, JING M X, WANG L, et al. PDOL-based solid electrolyte toward practical application: Opportunities and challenges[J]. Nanomicro Lett, 2024, 16(1): 127.
[31] [31] NIU B, WANG J, GUO Y L, et al. Polymers for aqueous zinc-ion batteries: From fundamental to applications across core components[J]. Adv Energy Mater, 2024, 14(12): 2303967.
[32] [32] LIU S J, ZHOU L, ZHONG T J, et al. Sulfide/polymer composite solid-state electrolytes for all-solid-state lithium batteries[J]. Adv Energy Mater, 2024, 14(48): 2403602.
[33] [33] TANAKA Y, UENO K, MIZUNO K, et al. New oxyhalide solid electrolytes with high lithium ionic conductivity >10 mS cm-1 for all-solid-state batteries[J]. Angew Chem Int Ed, 2023, 62(13): e202217581.
[34] [34] KZLASLAN A, KRKBNAR M, CETINKAYA T, et al. Sulfur doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes with enhanced ionic conductivity and a reduced activation energy barrier[J]. Phys Chem Chem Phys, 2020, 22(30): 17221–17228.
[35] [35] XU D L, HE J S, HE Y Y, et al. Amorphization of halide solid electrolytes for lithium super-ionic conductivity[J]. J Mater Chem A, 2024, 12(40): 27694–27702.
[36] [36] HE B J, ZHANG F, XIN Y, et al. Halogen chemistry of solid electrolytes in all-solid-state batteries[J]. Nat Rev Chem, 2023, 7(12): 826–842.
[37] [37] MURAYAMA M, KANNO R, IRIE M, et al. Synthesis of new lithium ionic conductor thio-LISICON: Lithium silicon sulfides system[J]. J Solid State Chem, 2002, 168(1): 140–148.
[38] [38] JUN K, CHEN Y, WEI G, et al. Diffusion mechanisms of fast lithium-ion conductors[J]. Nat Rev Mater, 2024, 9: 887–905.
[39] [39] WANG S, BAI Q, NOLAN A M, et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability[J]. Angew Chem Int Ed, 2019, 58(24): 8039–8043.
[40] [40] YAN H, YAO J M, YE Z R, et al. Al–F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes[J]. Chin Chem Lett, 2025, 36(1): 109568.
[41] [41] ZHAO F P, SUN Q, YU C, et al. Ultrastable anode interface achieved by fluorinating electrolytes for all-solid-state Li metal batteries[J]. ACS Energy Lett, 2020, 5(4): 1035–1043.
[42] [42] KWAK H, WANG S, PARK J, et al. Emerging halide superionic conductors for all-solid-state batteries: Design, synthesis, and practical applications[J]. ACS Energy Lett, 2022, 7(5): 1776–1805.
[43] [43] CAI L, ZHAO-YIN W, KUN R. High ion conductivity in garnet-type F-doped Li7La3Zr2O12[J]. J Inorgan Mater, 2015, 30(9): 995–1001.
[44] [44] KANG J R, GUO X, GU R, et al. Enhanced electrochemical performance of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte by anion doping[J]. Nano Res, 2024, 17(3): 1465–1472.
[45] [45] HAN F D, ZHU Y Z, HE X F, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Adv Energy Mater, 2016, 6(8): 1501590.
[46] [46] ZHAO R, HU G T, KMIEC S, et al. New amorphous oxy-sulfide solid electrolyte material: Anion exchange, electrochemical properties, and lithium dendrite suppressionvia in situinterfacial modification[J]. ACS Appl Mater Interfaces, 2021, 13(23): 26841–26852.
[47] [47] GUO Y Y, GUAN H L, PENG W X, et al. Enhancing the electrochemical performances of Li7P3S11 electrolyte through P2O5 substitution for all-solid-state lithium battery[J]. Solid State Ion, 2020, 358: 115506.
[48] [48] LIANG J W, CHEN N, LI X N, et al. Li10Ge(P1–xSbx)2S12 lithium-ion conductors with enhanced atmospheric stability[J]. Chem Mater, 2020, 32(6): 2664–2672.
[49] [49] ZHANG S M, ZHAO F P, CHEN J T, et al. A family of oxychloride amorphous solid electrolytes for long-cycling all-solid-state lithium batteries[J]. Nat Commun, 2023, 14(1): 3780.
[50] [50] DAI T, WU S Y, LU Y X, et al. Inorganic glass electrolytes with polymer-like viscoelasticity[J]. Nat Energy, 2023, 8: 1221–1228.
[51] [51] HU L, WANG J Z, WANG K, et al. A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries[J]. Nat Commun, 2023, 14(1): 3807.
[52] [52] CHENG J Y, ZHANG H C, WANG Z X, et al. O2− substituted Li-richened Li2ZrCl6 lattice towards superionic conductivity[J]. J Energy Storage, 2024, 89: 111700.
[53] [53] LUO Q Y, LIU C, LI L, et al. O-doping strategy enabling enhanced chemical/electrochemical stability of Li3InCl6 for superior solid-state battery performance[J]. J Energy Chem, 2024, 99: 484–494.
[54] [54] LI Y X, SONG S B, KIM H, et al. A lithium superionic conductor for millimeter-thick battery electrode[J]. Science, 2023, 381(6653): 50–53.
[55] [55] JI J W, LIU C Z, ZHOU Z, et al. Uniform boron nitride nanospheres with reactive surface defects for composite solid-state electrolytes[J]. ACS Appl Nano Mater, 2024, 7(11): 13230–13240.
[56] [56] FRANKENBERG F, KISSEL M, BURMEISTER C F, et al. Investigating the production of all-solid-state battery composite cathodes by numerical simulation of the stressing conditions in a high-intensity mixer[J]. Powder Technol, 2024, 435: 119403.
[57] [57] XU J R, LI Y X, LU P S, et al. Water-stable sulfide solid electrolyte membranes directly applicable in all-solid-state batteries enabled by superhydrophobic Li+-conducting protection layer[J]. Adv Energy Mater, 2022, 12(2): 2102348.
[58] [58] KIM K T, WOO J, KIM Y S, et al. Ultrathin superhydrophobic coatings for air-stable inorganic solid electrolytes: Toward dry room application for all-solid-state batteries[J]. Adv Energy Mater, 2023, 13(43): 2301600.
[59] [59] JUNG W D, JEON M, SHIN S S, et al. Functionalized sulfide solid electrolyte with air-stable and chemical-resistant oxysulfide nanolayer for all-solid-state batteries[J]. ACS Omega, 2020, 5(40): 26015–26022.
Get Citation
Copy Citation Text
LIU Hong, WU Qian, REN Yaoyu, ZHANG Xue, NAN Cewen. Constructing Composite Solid Electrolytes for Commercial All-Solid-State Lithium Batteries[J]. Journal of the Chinese Ceramic Society, 2025, 53(6): 1510
Category:
Received: Dec. 27, 2024
Accepted: Jul. 11, 2025
Published Online: Jul. 11, 2025
The Author Email: REN Yaoyu (renyaoyu@mail.tsinghua.edu.cn)