Journal of Quantum Optics, Volume. 27, Issue 4, 335(2021)
Generation of Entangled Coherent States in Acoustic Wave Resonators Coupled to a Nitrogen-vacancy-center Ensemble
[1] [1] ZHENG S B, GUO G C. Efficient Scheme for Two-Atom Entanglement and Quantum Information Processing in Cavity QED[J]. Physical Review Letters, 2000, 85(11): 2392-2395. DOI: 10.1103/PhysRevLett.85.2392.
[2] [2] RAIMOND J M, BRUNE M, HAROCHE S. Manipulating quantum entanglement with atoms and photons in a cavity[J]. Reviews of Modern Physics, 2001, 73(3): 565. DOI: 10.1103/RevModPhys.73.565.
[3] [3] LIAO Q, LIU Y. Control of the Entanglement Between the Two Atoms Interacting with a Fock State Field[J]. Acta Optica Sinica, 2012, 32(03): 303-307. (in Chinese). DOI: 10.3788/AOS201232.0327002.
[4] [4] DUAN L M, MONROE C. Colloquium: Quantum networks with trapped ions[J]. Reviews of Modern Physics, 2010, 82(2): 1209-1224. DOI: 10.1103/RevModPhys.82.1209.
[5] [5] YOU J Q, NORI F. Superconducting circuits and quantum information[J]. Physics Today, 2005, 58(11): 42. DOI: 10.1063/1.2155757.
[6] [6] BLAIS A, GAMBETTA J, WALLRAFF A, et al. Quantum-information processing with circuit quantum electrodynamics[J]. Physical Review A, 2007, 75(3): 032329. DOI: 10.1103/PhysRevA.75.032329.
[7] [7] TIAN L. Robust Photon Entanglement via Quantum Interference in Optomechanical Interfaces[J]. Physical Review Letters, 2013, 110(23): 233602. DOI: 10.1103/PhysRevLett.110.233602.
[8] [8] JOSHI C, LARSON J, JONSON M, et al. Entanglement of distant optomechanical systems[J]. Physical Review A, 2012, 85(3): 033805. DOI: 10.1103/PhysRevA.85.033805.
[9] [9] ZHAO H, ZHANG J. Entanglement Enhancement of Filter Output Light Field in Cavity Optical Force System[J]. Journal of Quantum Optics, 2021, 27(01): 1-7. DOI: 10.3788/JQO20212701.0101.
[10] [10] SANDERS B C. Entangled coherent states[J]. Physical Review A, 1992, 45(9): 6811-6815. DOI: 10.1103/PhysRevA.45.6811.
[11] [11] KANG Y H, SHI Z C, HUANG B H, et al. Deterministic conversions between Greenberger-Horne-Zeilinger states and W states of spin qubits via Lie-transform-based inverse Hamiltonian engineering[J]. Physical Review A, 2019, 100(1): 012332. DOI: 10.1103/PhysRevA.100.012332.
[12] [12] WANG H, HOFHEINZ M, ANSMANN M, et al. Measurement of the Decay of Fock States in a Superconducting Quantum Circuit[J]. Physical Review Letters, 2008, 101(24): 240401. DOI: 10.1103/PhysRevLett.101.240401.
[13] [13] GROSSHANS F, GRANGIER P. Continuous Variable Quantum Cryptography Using Coherent States[J]. Physical Review Letters, 2002, 88(5): 057902. DOI: 10.1103/PhysRevLett.88.057902.
[14] [14] AN N B. Teleportation of coherent-state superpositions within a network[J]. Physical Review A, 2003, 68(2): 022321. DOI: 10.1103/PhysRevA.68.022321.
[15] [15] JEONG H, KIM M S. Efficient quantum computation using coherent states[J]. Physical Review A, 2002, 65(4): 042305. DOI: 10.1103/PhysRevA.65.042305.
[16] [16] TONG Z, LIAO J. The Generation of Entangled Coherent States[J]. Acta Sinica Quantum Optica, 2006, (02): 63-66. DOI: 10.3969/j.issn.1007-6654.2006.02.001.
[17] [17] ULANOV A E, SYCHEV D, PUSHKINA A A, et al. Quantum Teleportation Between Discrete and Continuous Encodings of an Optical Qubit[J]. Physical Review Letters, 2017, 118(16): 160501. DOI: 10.1103/PhysRevLett.118.160501.
[18] [18] WANG N, DU S, LIU W, et al. Long-Distance Continuous-Variable Quantum Key Distribution with Entangled States[J]. Physical Review Applied, 2018, 10(6): 064028. DOI: 10.1103/PhysRevApplied.10.064028.
[19] [19] GELL J R, WARD M B, YOUNG R J, et al. Modulation of single quantum dot energy levels by a surface-acoustic-wave[J]. Applied Physics Letters, 2008, 93(8): 081115. DOI: 10.1063/1.2976135.
[20] [20] GORYACHEV M, CREEDON D L, IVANOV E N, et al. Extremely low-loss acoustic phonons in a quartz bulk acoustic wave resonator at millikelvin temperature[J]. Applied Physics Letters, 2012, 100(24): 243504. DOI: 10.1063/1.4729292.
[21] [21] WANG N, TSAI J M, HSIAO F L, et al. Experimental Investigation of a Cavity-Mode Resonator Using a Micromachined Two-Dimensional Silicon Phononic Crystal in a Square Lattice[J]. IEEE Electron Device Letters, 2011, 32(6): 821-823. DOI: 10.1109/led.2011.2136311.
[22] [22] GOLTER D A, OO T, AMEZCUA M, et al. Coupling a Surface Acoustic Wave to an Electron Spin in Diamond via a Dark State[J]. Physical Review X, 2016, 6(4): 041060. DOI: 10.1103/PhysRevX.6.041060.
[23] [23] GOLTER D A, OO T, AMEZCUA M, et al. Optomechanical Quantum Control of a Nitrogen-Vacancy Center in Diamond[J]. Physical Review Letters, 2016, 116(14): 143602. DOI: 10.1103/PhysRevLett.116.143602.
[24] [24] LI J, HUA M, YAN X. NOON State Generation with Phonons in Acoustic Wave Resonators Assisted by a Nitrogen-Vacancy-Center Ensemble[J]. Annalen der Physik, 2019, 531(2): 1800430. DOI: 10.1002/andp.201800430.
[25] [25] SHAO L, MAITY S, ZHENG L, et al. Phononic Band Structure Engineering for High-Q Gigahertz Surface Acoustic Wave Resonators on Lithium Niobate[J]. Physical Review Applied, 2019, 12(1): 014022. DOI: 10.1103/PhysRevApplied.12.014022.
[26] [26] SANTORI C, FATTAL D, SPILLANE S M, et al. Coherent population trapping in diamond N-V centers at zero magnetic field[J]. Optics Express, 2006, 14(17): 7986-7994. DOI: 10.1364/OE.14.007986.
[27] [27] XU L, ZHANG Z M. Modified effective Hamiltonian for degenerate Raman process[J]. Zeitschrift Für Physik B Condensed Matter, 1994, 95(4): 507-510. DOI: https://doi.org/10.1007/BF01313360.
[28] [28] WOOTTERS W K. Entanglement of Formation of an Arbitrary State of Two Qubits[J]. Physical Review Letters, 1998, 80(10): 2245-2248. DOI: 10.1103/PhysRevLett.80.2245.
[29] [29] BRAUNSTEIN S L, VAN LOOCK P. Quantum information with continuous variables[J]. Reviews of Modern Physics, 2005, 77(2): 513. DOI: 10.1103/RevModPhys.77.513.
[30] [30] BALASUBRAMANIAN G, NEUMANN G P, TWITCHEN D, et al. Ultralong spin coherence time in isotopically engineered diamond[J]. Nature Materials, 2009, 8: 383-387. DOI: 10.1038/nmat2420.
[31] [31] BENNETT S D, YAO N Y, OTTERBACH J, et al. Phonon-Induced Spin-Spin Interactions in Diamond Nanostructures: Application to Spin Squeezing[J]. Physical Review Letters, 2013, 110(15): 156402. DOI: 10.1103/PhysRevLett.110.156402.
Get Citation
Copy Citation Text
CHENG Liu-Yong, CHEN Jie-Ying, MENG Zuan. Generation of Entangled Coherent States in Acoustic Wave Resonators Coupled to a Nitrogen-vacancy-center Ensemble[J]. Journal of Quantum Optics, 2021, 27(4): 335
Category:
Received: Jul. 4, 2021
Accepted: Aug. 7, 2025
Published Online: Aug. 7, 2025
The Author Email: CHENG Liu-Yong (lycheng@sxnu.edu.cn)