Chinese Journal of Lasers, Volume. 41, Issue 11, 1102005(2014)
High Peak Power Microchip Laser and its LIBS Application
[1] [1] Rusak D A, Castle B C, Smith B W, et al.. Fundamentals and applications of laser-induced breakdown spectroscopy[J]. Critical Reviews in Analytical Chemistry, 1997, 27(4): 257-290.
[5] [5] Miziolek A W, Palleschi V, Schechter I. Laser Induced Breakdown Spectroscopy[M]. Cambridge: Cambridge University Press, 2006.
[6] [6] Fang Quanyu, Yan Jun. Atomic Structure, Collision and Spectrum Theory[M]. Beijing: National Defence Industry Press, 2006.
[7] [7] Yuan Dongqing, Zhou Ming, Liu Changlong, et al.. The theory and effect factors of laser breakdown spectroscopy (LIBS)[J]. Spectroscopy and Spectral Analysis, 2008, 28(9): 2019-2023.
[8] [8] Zhou S, Li S, Lee K K, et al.. Monolithic self-Q-switched Cr, Nd:YAG laser[J]. Opt Lett, 1993, 18(7): 511-512.
[9] [9] Li S, Lee K K, Zhou S, et al.. Self-Q-switched diode-end-pumped Cr,Nd:YAG laser with polarized output[J]. Opt Lett, 1993, 18(3): 203-204.
[12] [12] Lei H, Gong M, Ping Y, et al.. Repetition rate continuously controllable passively Q-switched Nd:YAG bonded microchip laser[J]. Laser Physics Letters, 2007, 4(8): 572-575.
[13] [13] John J Zayhowski. Passively Q-switched Nd:YAG microchip lasers and applications[J]. J Alloys and Compounds, 2000, 303: 393-400.
[14] [14] Miao J, Wang B, Peng J, et al.. Efficient diode-pumped passively Q-switched laser with Nd:YAG/Cr:YAG composite crystal[J]. Optics & Laser Technology, 2008, 40(1): 137-141.
[15] [15] Freedman A, Iannarilli Jr F J, Wormhoudt J C. Aluminum alloy analysis using microchip-laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005, 60(7): 1076-1082.
[16] [16] Lopez-Moreno C, Smith B W, Gornushkin I B, et al.. Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy[J]. J Analytical Atomic Spectrometry, 2005, 20(6): 552-556.
[17] [17] Sha Pingsheng. Design and Research of Microchip Laser Based Laser Induced Breakdown Spectroscopy System[D]. Shanghai: Donghua University, 2011.
[18] [18] Sakai H, Kan H, Taira T. >1 MW peak power single-mode high-brightness passively Q-switched Nd3+:YAG microchip laser[J]. Opt Express, 2008, 16(24): 19891-19899.
[19] [19] Bhandari R, Taira T. Palm-top size megawatt peak power ultraviolet microlaser[J]. Opt Eng, 2013, 52(7): 076102.
[20] [20] Wang Han, Li Shuifeng, Liu Xiuying. Optical structure of miniature spectrometer[J]. J Applied Optics, 2008, 29(2): 230-233.
[22] [22] Rui Chuanqing. Study and Aberration Analysis on the Optical System of Mini-Fiber-Spectrometers[D]. Haerbin: Harbin Institute of Technology, 2005.
[24] [24] Sansonetti J E, Martin W C. Handbook of basic atomic spectroscopic data[J]. J Physical and Chemical Reference Data, 2005, 34(4): 1559-2259.
[25] [25] Zheng Guojing, Ji Zihua, Yu Xing. Atomic Emission Spectrum Analysis Technology and Application[M]. Beijing: Chemical Industry Press, 2009.
Get Citation
Copy Citation Text
Deng Ben, Wang Jie, Jiang Peipei, Wu Bo, Shen Yonghang. High Peak Power Microchip Laser and its LIBS Application[J]. Chinese Journal of Lasers, 2014, 41(11): 1102005
Category: Laser physics
Received: May. 7, 2014
Accepted: --
Published Online: Sep. 12, 2014
The Author Email: Deng Ben (dengben@zju.edu.cn)