Laser & Optoelectronics Progress, Volume. 60, Issue 15, 1500005(2023)

Interaction Between Laser and Thermal-Alkali Atomic Ensemble: Progress and Prospect

Weiyi Wang1,2 and Zhen Chai1,2、*
Author Affiliations
  • 1School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
  • 2Hangzhou Innovation Institute, Beihang University, Hangzhou 310023, Zhejiang, China
  • show less
    Figures & Tables(8)
    Structure diagram of energy level splitting of ground state and first excited state of a Rb atom. (a) Orbital energy level (orbital spin L1=0,L2=1); (b) fine structure energy level (electron spin S=1/2); (c) hyperfine structure energy level (nuclear spin I=3/2)
    Schematic diagram of atomic magnetometer principle
    Basic response curves of atomic magnetometer. (a) Absorption curve (solid line); (b) dispersion curve (dashed line)
    Schematic diagram of CPT atomic clock principle. (a) Λ energy level configuration; (b) typical EIT absorption line type
    • Table 1. Physical mechanisms of various atomic relaxation processes[46]

      View table

      Table 1. Physical mechanisms of various atomic relaxation processes[46]

      Relaxation mechanismPotentialTypical phenomenonTypical parameterReference
      Near field dipole moment interaction(DADB)-3DAR̂AB×R̂ABDBR-3Self-broadening of optical lines and self-depolarization of excited states;foreign gas broadeningResonant interaction cross section σDN ~10-13 cm247
      Radiation field dipole moment interaction(DAR̂ABR̂ABDB-3DADB)k2R-1Radiation trapping;coherence narrowingRelaxation times depend on container shape48
      Electron spin exchange interactionVR̂ABSASBApproach to spin temperature equilibrium;conservation of total spinInteraction cross section σDR ~10-14 cm249-50
      Coupling of electron spin to orbital spinVR̂NS

      Disorientation of S-state

      atoms by wall collisions

      and buffer-gas collisions

      Interaction cross section

      σLS ~10-19-10-26 cm2

      51
      Coupling of electron spin to nuclear spinST(R̂)IDisorientation of S-state atoms by wall collisions and buffer-gas collisions;nuclear polarization by spin exchange with electrons

      Interaction cross section

      σIS ~10-24 cm2

      52
      nuclear quadrupole moment16E:QWall relaxation of nuclear spins of diamagnetic atomsDepends on sticking time at wall,field gradients at wall,nuclear quadrupole moment,etc.53
      Random motion in an inhomogeneous magnetic fieldv(H×H)I|H|2Relaxation of 3He ground-state atomsDepends on field gradient and mean free path54-55
      Scattering of resonant light-emcpARelaxation of pumped atoms to polarized equilibrium stateTypical pumping times are on order of milliseconds or longer56
      Diffusion of atomsDiffusion rate is proportional to average free path and average velocity of atomSpatial motion of polarized atoms to container walls by random walk through a buffer gasA few milliseconds in a cm scale cell57
    • Table 2. Parameters of SERF atomic magnetometers in different alkali atomic gas chambers

      View table

      Table 2. Parameters of SERF atomic magnetometers in different alkali atomic gas chambers

      Atomic speciesHeating temperature /Sensitivity /(fTHzYearReference
      Potassium19010200266
      1800.54200316
      18020200971
      2000.16201072
      Rubidium1905201017
      140-1806-11201273
      1804201418
      15015201874
      17510201975
      Cesium10340200876
      12014201477
      Potassium & Rubidium1955201478
      2100.68201979
    • Table 3. Types and specifications of high-performance CPT atomic clocks

      View table

      Table 3. Types and specifications of high-performance CPT atomic clocks

      TechnologyStabilityYearReference
      Vertically polarized light configuration combined with Ramsey time-domain separation method

      Short-term stability

      3×10-13τ-1/2,τ100 s

      201394
      Push-pull optical pumping combined with self-balancing Ramsey method10000 s stability 2×10-1520188895
    • Table 4. Performances and applications of SERF atomic spin gyroscope

      View table

      Table 4. Performances and applications of SERF atomic spin gyroscope

      YearSensitivityApplicationReference
      20052.9×10-5°/s/Hz1/2First realization of self-compensating SERF inertial measurement of nuclear spin96
      20094×10-6°/s/Hz1/2Measuring neutron spin-spin interactions97
      20104×10-6°/s/Hz1/2Highest index for verification of |b˜n| parameter of neutron charge conjugation-parity-time inversion symmetry breaking63
      20127×10-5°/s/Hz1/2Domestic first realization of SERF atomic spin gyro98
    Tools

    Get Citation

    Copy Citation Text

    Weiyi Wang, Zhen Chai. Interaction Between Laser and Thermal-Alkali Atomic Ensemble: Progress and Prospect[J]. Laser & Optoelectronics Progress, 2023, 60(15): 1500005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jul. 11, 2022

    Accepted: Aug. 5, 2022

    Published Online: Aug. 11, 2023

    The Author Email: Zhen Chai (zhenchai@buaa.edu.cn)

    DOI:10.3788/LOP222049

    Topics