Laser Technology, Volume. 47, Issue 6, 729(2023)

Simulation and analysis of LiDAR based on DPMZM and microwave photonic frequency multiplication

YANG Qin1, CHEN Xiaolin1、*, ZENG Cheng1, XU Shiyue1, YANG Junmin1, ZHANG Zhijian1, YANG Feng1,2, and GAO Jianbo1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(36)

    [1] [1] LI Ch L, LIU J Ch, ZHANG F M, et al. Review of nonlinearity co-rrection of frequency modulated continuous wave LiDAR measurement technology[J]. Opto-Electron Engineering, 2022, 49(7): 210438(in Chinese).

    [3] [3] ROYO S, BALLESTA-GARCIA M. An overview of LiDAR imaging systems for autonomous vehicles[J]. Applied Sciences, 2019, 9(19): 4093.

    [4] [4] SCHWARZ B. LiDAR: Mapping the world in 3D[J]. Nature Photonics, 2010, 4(7):429-430.

    [5] [5] MITCHELL E W, HOEHLER M S, GIORGETTA F R, et al. Cohe-rent laser ranging for precision imaging through flames[J]. Optica, 2018, 5(8):988-995.

    [6] [6] DILAZARO T, NEHMETALLAH G. Large-volume, low-cost, high-precision FMCW tomography using stitched DFBs[J]. Optics Express, 2018, 26(3): 2891-2904.

    [7] [7] POULTON C V, YAACOBI A, COLE D B, et al. Coherent solid-state LiDAR with silicon photonic optical phased arrays[J]. Optics Letters, 2017, 42(20):4091-4094.

    [8] [8] LI G Z, WANG R, SONG Z Q, et al. Linear frequency-modulated continuous-wave ladar system for synthetic aperture imaging[J]. A-pplied Optics, 2017, 56: 3257-3262.

    [9] [9] GAO S, HUI R. Frequency-modulated continuous-wave LiDAR using I/Q modulator for simplified heterodyne detection[J]. Optics Letters, 2012, 37(11):2022-2024.

    [10] [10] XU Zh Y, ZHANG H, CHEN K, et al. FMCW LiDAR using phase-diversity coherent detection to avoid signal aliasing[J]. IEEE Photonics Technology Letters, 2019, 31(22):1822-1825.

    [11] [11] ZHANG T, QU X H, ZHANG F M. Nonlinear error correction for FMCW ladar by the amplitude modulation method[J]. Optics Express, 2018, 26(9):11519-11528.

    [12] [12] ALAVI S E, SOLTANIAN M R K, AMIRI I S, et al. Towards 5G: A photonic based millimeter wave signal generation for applying in 5G access fronthaul[J]. Scientific Reports, 2016, 6: 19891.

    [13] [13] MATSKO A. Advances in the development of spectrally pure microwave photonic synthesizers[J]. IEEE Photonics Technology Letters, 2019, 31(23): 1882-1885.

    [14] [14] YAO J P, CAPMANY J. Microwave photonics[J]. Science China Information Sciences, 2022, 65: 221401.

    [15] [15] DEGLI-EREDI I, AN P L, DRASBAEK J, et al. Millimeter-wave generation using hybrid silicon photonics[J]. Journal of Optics, 2021, 23(4):043001.

    [16] [16] HOANG V N. A cost-effective DD-OFDM ROF system employing FBG and DML to generate optical mm-wave[J]. Journal of Optical Communications, 2014, 35(2):141-149.

    [17] [17] WANG Y Y, YANG Ch, CHI N, et al. Photonic frequency-quadrupling and balanced pre-coding technologies for W-band QPSK vector mm-wave signal generation based on a single DML[J]. Optics Communications, 2016, 367:239-243.

    [18] [18] KURI T, KITAYAMA K. Laser phase noise free optical heterodyne detection technique for 60-GHz-band radio-on-fiber systems[C]// International Topical Meeting on Microwave Photonics. New York, USA: IEEE, 2000: 141-144.

    [19] [19] LI J, NING T G, PEI L, et al. 60 GHz millimeter-wave generator based on a frequency-quadrupling feed-forward modulation technique[J]. Optics Letters, 2010, 35(21):3619-3621.

    [20] [20] CARPINTERO G, BALAKIER K, YANG Z, et al. Microwave photonic integrated circuits for millimeter-wave wireless communications[J]. Journal of Lightwave Technology, 2014, 32(20):3495-3501.

    [21] [21] XIAO J N, ZHANG Z R, LI X Y, et al. High-frequency photonic vector signal generation employing a single phase modulator[J]. IEEE Photonics Journal, 2015, 7(2):1-6.

    [22] [22] WU Z Y, Cao Ch Q, ZENG X D, et al. Filterless radio-over-fiber system to generate 40 and 80 GHz millimeter-wave[J]. IEEE Photonics Journal, 2020, 12(6):1-13.

    [23] [23] SHIH P T, CHEN J, LIN C T, et al. Optical millimeter-wave signal generation via frequency 12-tupling[J]. Journal of Lightwave Technology, 2009, 28(1):71-78.

    [24] [24] ZHANG Ch F, WANG L Y, QIU K. Proposal for all-optical generation of multiple-frequency millimeter-wave signals for RoF system with multiple base stations using FWM in SOA[J]. Optics Express, 2011, 19(15):13957-13962.

    [25] [25] PARK C S, LEE C G, PARK C S. Photonic frequency upconversion by SBS-based frequency tripling[J]. Journal of Lightwave Technology, 2007, 25(7):1711-1718.

    [26] [26] KUMARI A, KUMAR A, GAUTAM A. Photonic generation and theoretical investigation of phase noise in quadrupling and 12-tupling millimeter wave signal using optical self-heterodyne system[J]. Optik—International Journal for Light and Electron Optics, 2021, 231(7):166432.

    [27] [27] PREM P K A, CHAKRAPANI A. A millimeter-wave generation scheme based on frequency octupling using LiNbO3 Mach-Zehnder modulator[J]. National Academy Science Letters, 2019, 42:401-406.

    [28] [28] LI X, ZHAO Sh H, ZHU Z H, et al. An optical millimeter-wave generation scheme based on two parallel dual-parallel Mach-Zehnder modulators and polarization multiplexing[J]. Journal of Modern Optics, 2015, 62(18):1502-1509.

    [29] [29] ZHU Z H, ZHAO Sh H, CHU X Ch, et al. Optical generation of millimeter-wave signals via frequency 16-tupling without an optical filter[J]. Optics Communications, 2015, 354:40-47.

    [30] [30] CHOI S T, YANG K S, NISHI S, et al. A 60-GHz point-to-multipoint millimeter-wave fiber-radio communication system[J]. IEEE Transactions on Microwave Theory & Techniques, 2006, 54(5):1953-1960.

    [31] [31] OH T K, KIM H J, LEE S H, et al. Photonic frequency quadrupling utilizing a LiNbO3 phase modulator and a Brillouin-assisted optical filter[C]// 2011 International Topical Meeting on Microwave Photonics Jointly Held with the 2011 Asia-Pacific Microwave Photonics Conference. New York, USA: IEEE, 2011: 195-197.

    [32] [32] CHAUDHURI R B, BARMAN A D, BOGONI A. Photonic 60 GHz sub-bands generation with 24-tupled frequency multiplication using cascaded dual parallel polarization modulators[J]. Optical Fiber Technology, 2020, 58:102244.

    [33] [33] BASKARAN M, PRABAKARAN R, GAYATHRI T S. Photonic generation of frequency 16-tupling millimeter wave signal using polarization property without an optical filter[J]. Optik—International Journal for Light and Electron Optics, 2019, 184(9):348-355.

    [34] [34] CHEN Y, WEN A J, SHANG L. Analysis of an optical mm-wave generation scheme with frequency octupling using two cascaded Mach-Zehnder modulators[J]. Optics Communications, 2010, 283(24): 4933-4941.

    [35] [35] WANG T L, YUAN M Y, LIU B, et al. Triangular waveform generation with frequency doubling based on microwave photonics[J]. Laser Technology, 2019, 43(1): 79-82(in Chinese).

    Tools

    Get Citation

    Copy Citation Text

    YANG Qin, CHEN Xiaolin, ZENG Cheng, XU Shiyue, YANG Junmin, ZHANG Zhijian, YANG Feng, GAO Jianbo. Simulation and analysis of LiDAR based on DPMZM and microwave photonic frequency multiplication[J]. Laser Technology, 2023, 47(6): 729

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 25, 2022

    Accepted: --

    Published Online: Dec. 5, 2023

    The Author Email: CHEN Xiaolin (chen-xl13@qq.com)

    DOI:10.7510/jgjs.issn.1001-3806.2023.06.001

    Topics