Acta Optica Sinica, Volume. 43, Issue 14, 1404002(2023)

Preparation of High-Performance CsPbIBr2 Photodetector via Interfacial Seed Layer Modification Strategy

Xin Shu1, Yingshen Lu1, Zifa Zhang1, Jiaxing Kang1, Xiang Yuan1, Feng Hong1,2, Run Xu2,3, Zhongquan Ma1, and Fei Xu1,2、*
Author Affiliations
  • 1Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
  • 2Zhejiang Institute of Advanced Materials, Shanghai University, Jiashan314113, Zhejiang, China
  • 3Department of Electronic Information Materials, Shanghai University, Shanghai 200444, China
  • show less
    References(31)

    [1] Chen H Y, Lu Y, Li C et al. Multilayer PtSe2/TiO2 NRs Schottky junction for UV photodetector[J]. Acta Optica Sinica, 40, 2025001(2020).

    [2] Hu H F, Xu Y T, Li L et al. CuCr1-xMgxO2/ZnO nanorods UV photodetector prepared by Sol-gel method[J]. Acta Optica Sinica, 42, 1423001(2022).

    [3] Yang L C, Fu K, Shi X X et al. Technology and performance of metal-semiconductor-metal AlGaN/GaN heterostructure ultraviolet photodetector[J]. Acta Optica Sinica, 34, s104001(2014).

    [4] Ma W B, Kuang C F, Liu X et al. Research progress of X-ray detection and imaging based on emerging metal halide semiconductors and scintillators[J]. Acta Optica Sinica, 42, 1704002(2022).

    [5] Wu G, Tang L B, Hao Q et al. Dual-band and high-responsivity ultraviolet detector based on Pt/GaN/AlGaN heterojunction[J]. Acta Optica Sinica, 43, 0304002(2023).

    [6] Ye Z Z, Wang F Z, Chen F et al. Wide band gap semiconductor optoelectronic materials and their applications[J]. Acta Optica Sinica, 42, 1716001(2022).

    [7] Lin Y N, Wu Y D, Cheng H Y et al. Near-infrared integrated photodetector based on PdSe2 nanowires film/Si heterojunction[J]. Acta Optica Sinica, 41, 2125001(2021).

    [8] Weng S Y, Jiang D Y, Zhao M. P3HT∶PC61BM as active layer for preparation of inorganic/organic heterojunction photodetector[J]. Acta Optica Sinica, 42, 1304001(2022).

    [9] Hu Z T, Shu X, Wang X et al. Air-stable CsPbIBr2 photodetector via dual-ligand-assisted solution strategy[J]. Acta Physica Sinica, 71, 116801(2022).

    [10] Du J, Duan J L, Yang X Y et al. Reducing defect of inorganic perovskite film by sulphur-containing Lewis base for robust photodetectors[J]. Journal of Energy Chemistry, 61, 163-169(2021).

    [11] Liu Z J, Li H, Qin C J et al. Solution-processed inorganic perovskite flexible photodetectors with high performance[J]. Nanoscale Research Letters, 14, 284-291(2019).

    [12] Zhang Z, Zhang W T, Wei Z M et al. Dipole-templated homogeneous grain growth of CsPbIBr2 films for efficient self-powered, all-inorganic photodetectors[J]. Solar Energy, 209, 371-378(2020).

    [13] Obiozo E V, Ryan A G, Braga C L et al. Enhanced inorganic CsPbIBr2 perovskite film for a sensitive and rapid response self-powered photodetector[J]. Journal of Physical Chemistry C, 124, 20643-20653(2020).

    [14] Zhang Z, Zhang W T, Jiang Q B et al. High-performance, vacuum-free, and self-powered CsPbIBr2 photodetectors boosted by ultra-wide-bandgap Ga2O3 interlayer[J]. IEEE Electron Device Letters, 41, 1532-1535(2020).

    [15] Zhang T, Li S B. Self-powered all-inorganic perovskite photodetectors with fast response speed[J]. Nanoscale Research Letters, 16, 6-13(2021).

    [16] Zhang Z, Zhang W T, Jiang Q B et al. Toward high-performance electron/hole-transporting-layer-free, self-powered CsPbIBr2 photodetectors via interfacial engineering[J]. ACS Applied Materials & Interfaces, 12, 6607-6614(2020).

    [17] Blochl P E. Projector augmented-wave method[J]. Physical Review B, 50, 17953-17979(1994).

    [18] Haruta Y, Wada S, Ikenoue T et al. Columnar grain growth of lead-free double perovskite using mist deposition method for sensitive X-ray detectors[J]. Crystal Growth & Design, 21, 4030-4037(2021).

    [19] Zhu W D, Zhang Z Y, Chai W M et al. Benign pinholes in CsPbIBr2 absorber film enable efficient carbon-based, all-inorganic perovskite solar cells[J]. ACS Applied Energy Materials, 2, 5254-5262(2019).

    [20] Zhao Y C, Tan H R, Yuan H F et al. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells[J]. Nature Communications, 9, 1607-1617(2018).

    [21] Birgin E G, Chambouleyron I, Martı́nez J M. Estimation of the optical constants and the thickness of thin films using unconstrained optimization[J]. Journal of Computational Physics, 151, 862-880(1999).

    [22] Xue Q F, Bai Y, Liu M Y et al. Dual interfacial modifications enable high performance semitransparent perovskite solar cells with large open circuit voltage and fill factor[J]. Advanced Energy Materials, 7, 1602333(2017).

    [23] Chen W J, Li D, Chen S S et al. Spatial distribution recast for organic bulk heterojunctions for high-performance all-inorganic perovskite/organic integrated solar cells[J]. Advanced Energy Materials, 10, 2000851(2020).

    [24] Hu W D, Chen X S, Ye Z H et al. A hybrid surface passivation on HgCdTe long wave infrared detector with in situ CdTe deposition and high-density hydrogen plasma modification[J]. Applied Physics Letters, 99, 091101(2011).

    [25] Jozwikowska A, Jozwikowski K, Antoszewski J et al. Generation-recombination effects on dark currents in CdTe-passivated midwave infrared HgCdTe photodiodes[J]. Journal of Applied Physics, 98, 014504(2005).

    [26] Yang Z C, Meng W W, Kang J X et al. Unraveling the defect-dominated broadband emission mechanisms in (001)-preferred two-dimensional layered antimony-halide perovskite film[J]. The Journal of Physical Chemistry Letters, 13, 11736-11744(2022).

    [27] Liang Z M, Zeng P Y, Liu P Y et al. Interface engineering to boost photoresponse performance of self-powered, broad-bandwidth PEDOT: PSS/Si heterojunction photodetector[J]. ACS Applied Materials & Interfaces, 8, 19158-19167(2016).

    [28] Chen G S, Feng J G, Gao H F et al. Stable α‑CsPbI3 perovskite nanowire arrays with preferential crystallographic orientation for highly sensitive photodetectors[J]. Advanced Functional Materials, 29, 1808741(2019).

    [29] Cui D, Tian C C, Wang Y P et al. Back-to-back Schottky junction photodetectors based on CVD grown CsPbBr3 microcrystalline striped films[J]. AIP Advances, 9, 125039(2019).

    [30] Tsai D S, Lien D H, Tsai M L et al. Trilayered MoS2 metal–semiconductor-metal photodetectors: photogain and radiation resistance[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 30-35(2014).

    [31] Kim H S, Kumar M D, Patel M et al. High-performing ITO/CuO/n-Si photodetector with ultrafast photoresponse[J]. Sensors and Actuators A, 252, 35-41(2016).

    Tools

    Get Citation

    Copy Citation Text

    Xin Shu, Yingshen Lu, Zifa Zhang, Jiaxing Kang, Xiang Yuan, Feng Hong, Run Xu, Zhongquan Ma, Fei Xu. Preparation of High-Performance CsPbIBr2 Photodetector via Interfacial Seed Layer Modification Strategy[J]. Acta Optica Sinica, 2023, 43(14): 1404002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Detectors

    Received: Feb. 3, 2023

    Accepted: Mar. 20, 2023

    Published Online: Jul. 13, 2023

    The Author Email: Fei Xu (feixu@shu.edu.cn)

    DOI:10.3788/AOS230496

    Topics