Infrared Technology, Volume. 47, Issue 8, 990(2025)

Low-rank and Sparse Representation Hyperspectral Anomaly Detection Based on Spatial-Spectral Dictionary

Miao TIAN1, Yuancheng HUANG1、*, Mingxin LI1, and Shuoshuo LIU2
Author Affiliations
  • 1College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
  • 2Shaanxi Yanchang Petroleum Balasu Coal Industry Co., Ltd., Yulin 719000, China
  • show less
    References(13)

    [3] [3] SU H, WU Z, ZHANG H, et al. Hyperspectral anomaly detection: a survey[J].IEEE Geoscience and Remote Sensing Magazine, 2021,10(1): 64-90.

    [6] [6] Reed I S, YU X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J].IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990,38(10): 1760-1770.

    [7] [7] Schaum A. Joint subspace detection of hyperspectral targets[C]//2004IEEE Aerospace Conference Proceedings (IEEE Cat. No. 04TH8720). IEEE, 2004, DOI: 10.1109/AERO.2004.1367963

    [8] [8] Kwon H, Nasrabadi N M. Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery[J].IEEE Transactions on Geoscience and Remote Sensing, 2005,43(2): 388-397.

    [9] [9] Matteoli S, Veracini T, Diani M, et al. A locally adaptive background density estimator: An evolution for RX-based anomaly detectors[J].IEEE Geoscience and Remote Sensing Letters, 2013,11(1): 323-327.

    [10] [10] LI W, DU Q. Collaborative representation for hyperspectral anomaly detection[J].IEEE Transactions on Geoscience and Remote Sensing, 2014,53(3): 1463-1474.

    [11] [11] CHEN Y, Nasrabadi N M, Tran T D. Sparse representation for target detection in hyperspectral imagery[J].IEEE Journal of Selected Topics in Signal Processing, 2011,5(3): 629-640.

    [12] [12] XU Y, WU Z, LI J, et al. Anomaly detection in hyperspectral images based on low-rank and sparse representation[J].IEEE Transactions on Geoscience and Remote Sensing, 2015,54(4): 1990-2000.

    [13] [13] ZHANG Y, DU B, ZHANG L, et al. A low-rank and sparse matrix decomposition-based Mahalanobis distance method for hyperspectral anomaly detection[J].IEEE Transactions on Geoscience and Remote Sensing, 2015,54(3): 1376-1389.

    [14] [14] LIU G, LIN Z, YAN S, et al. Robust recovery of subspace structures by low-rank representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,35(1): 171-184.

    [15] [15] YANG Y, ZHANG J, SONG S, et al. Hyperspectral anomaly detection via dictionary construction-based low-rank representation and adaptive weighting[J].Remote Sensing, 2019,11(2): 192.

    [17] [17] TAN K, HOU Z, MA D, et al. Anomaly detection in hyperspectral imagery based on low-rank representation incorporating a spatial constraint[J].Remote Sensing, 2019,11(13): 1578.

    [24] [24] HOU Z, LI W, TAO R, et al. Collaborative representation with background purification and saliency weight for hyperspectral anomaly detection[J].Science China Information Sciences, 2022,65: 1-12.

    Tools

    Get Citation

    Copy Citation Text

    TIAN Miao, HUANG Yuancheng, LI Mingxin, LIU Shuoshuo. Low-rank and Sparse Representation Hyperspectral Anomaly Detection Based on Spatial-Spectral Dictionary[J]. Infrared Technology, 2025, 47(8): 990

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 15, 2023

    Accepted: Sep. 15, 2025

    Published Online: Sep. 15, 2025

    The Author Email: HUANG Yuancheng (yuanchenghuang@xust.edu.cn)

    DOI:

    Topics