Laser & Optoelectronics Progress, Volume. 61, Issue 14, 1428006(2024)

Dual-Branch Remote Sensing Building Extraction Network Based on Texture Enhancement

Xu Chen and Mingchang Shi*
Author Affiliations
  • School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
  • show less
    Figures & Tables(14)
    TEOA-UNet structure
    The process of Outlook Transformer calculation
    Edge aware module
    Visualization results of ablation experiments。(a) Images; (b) labels; (c) Baseline; (d) Baseline+Out; (e) Baseline+Out+EAM; (f) proposed model
    Visualized results on the Massachusetts Building dataset. (a) Images; (b) labels; (c) TEOA-UNet; (d) SDSC-UNet; (e) MANet; (f) BANet; (g) DC-Swin
    Visualized results on the Massachusetts Building dataset. (a) Images; (b) labels; (c) TEOA-UNet; (d) SDSC-UNet; (e) MANet; (f) BANet; (g) DC-Swin
    Visualized results on the Inria dataset. (a) Images; (b) labels; (c) TEOA-UNet; (d) SDSC-UNet; (e) MANet; (f) BANet; (g) DC-Swin
    • Table 1. Texture enhancement branch

      View table

      Table 1. Texture enhancement branch

      LayerInput sizeOutput sizeComponentkcsp
      #01H×W64×H2×W2ConvBR76423
      #0264×H2×W264×H4×W4ConvBR36421
      #0364×H4×W4Cg×H8×W8ConvBR3Cg21
      #04Cg×H8×W8H8×W8ConvBR1110
    • Table 2. Results of ablation experiment

      View table

      Table 2. Results of ablation experiment

      ModelRIoURprecisionRrecallsF1
      Baseline76.7188.0585.6286.82
      Baseline+Out77.7087.8087.0987.45
      Baseline+Out+EAM79.1089.1387.5488.32
      Proposed model79.4588.9788.1288.54
    • Table 3. Comparison results of hyperparameters in the Massachusetts dataset

      View table

      Table 3. Comparison results of hyperparameters in the Massachusetts dataset

      a1a2a3a4RIoURprecisionRrecallsF1
      0.51100.288.2678.9888.2888.07
      21100.288.0178.5888.6187.41
      10.5100.287.7977.1588.2987.45
      12100.288.3178.4987.7187.47
      1150.288.0378.2787.6587.23
      11150.287.9878.5488.2487.72
      11100.188.0978.7189.0687.14
      11100.588.2779.0188.3588.03
      11100.288.5479.4588.9788.12
    • Table 4. Accuracy comparison of Massachusetts Building dataset

      View table

      Table 4. Accuracy comparison of Massachusetts Building dataset

      ModelRIoURprecisionRrecallsF1
      MANet1770.7682.0083.7782.88
      BANet1872.2083.0784.6683.86
      DC-Swin2272.5983.0785.1984.12
      SDSC-UNet2476.7188.0585.6286.82
      TEOA-UNet79.4588.9788.1288.54
    • Table 5. Accuracy comparison of WHU Building dataset

      View table

      Table 5. Accuracy comparison of WHU Building dataset

      ModelRIoURprecisionRrecallsF1
      MANet1790.0494.6194.8994.75
      BANet1889.0994.5494.8994.75
      DC-Swin2289.1094.4394.0494.23
      SDSC-UNet2490.2194.3295.1594.73
      TEOA-UNet91.8895.5295.1895.22
    • Table 6. Accuracy comparison of Inria dataset

      View table

      Table 6. Accuracy comparison of Inria dataset

      ModelRIoURprecisionRrecallsF1
      MANet1776.2286.5486.4786.52
      BANet1876.987.7386.1786.94
      DC-Swin2278.0388.6287.4888.04
      SDSC-UNet2483.0191.5289.9290.71
      TEOA-UNet82.6391.6790.2390.94
    • Table 7. Cross domain experimental results

      View table

      Table 7. Cross domain experimental results

      DatasetModelRIoURprecisionRrecallsF1
      MassachusettsBaseline41.4783.2044.9158.63
      Proposed model43.7584.4247.9960.87
      InriaBaseline58.9782.4767.4274.19
      Proposed model61.7282.4971.7976.33
    Tools

    Get Citation

    Copy Citation Text

    Xu Chen, Mingchang Shi. Dual-Branch Remote Sensing Building Extraction Network Based on Texture Enhancement[J]. Laser & Optoelectronics Progress, 2024, 61(14): 1428006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Aug. 24, 2023

    Accepted: Dec. 21, 2023

    Published Online: Jul. 8, 2024

    The Author Email: Mingchang Shi (shimc@dtgis.com)

    DOI:10.3788/LOP231965

    CSTR:32186.14.LOP231965

    Topics